一种基于SVR融合的无参考图像质量评估方法

Dakkar Borhen Eddine, F. Hachouf, Z. A. Seghir
{"title":"一种基于SVR融合的无参考图像质量评估方法","authors":"Dakkar Borhen Eddine, F. Hachouf, Z. A. Seghir","doi":"10.1109/EUVIP.2014.7018390","DOIUrl":null,"url":null,"abstract":"This paper presents a new concept of assessing image quality. It is based on support vector regression (SVR) fusion. Despite the variety of the proposed IQM measures, no efficient and sufficient measure gives good performance over different distortions. Motivated by this problem, a new measure for No reference Image Quality Assessment Based on SVR Fusion (NR BSVRF) is constituted. First, five recent no reference measures are selected to form a quality vector of an image, then the quality vector is fused via SVR. The SVR is trained to have a model that is used to predict the image quality. Obtained results are promising. They have shown better performance compared to existing No-reference image quality measures.","PeriodicalId":442246,"journal":{"name":"2014 5th European Workshop on Visual Information Processing (EUVIP)","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A new no-reference image quality assessment based on SVR fusion\",\"authors\":\"Dakkar Borhen Eddine, F. Hachouf, Z. A. Seghir\",\"doi\":\"10.1109/EUVIP.2014.7018390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new concept of assessing image quality. It is based on support vector regression (SVR) fusion. Despite the variety of the proposed IQM measures, no efficient and sufficient measure gives good performance over different distortions. Motivated by this problem, a new measure for No reference Image Quality Assessment Based on SVR Fusion (NR BSVRF) is constituted. First, five recent no reference measures are selected to form a quality vector of an image, then the quality vector is fused via SVR. The SVR is trained to have a model that is used to predict the image quality. Obtained results are promising. They have shown better performance compared to existing No-reference image quality measures.\",\"PeriodicalId\":442246,\"journal\":{\"name\":\"2014 5th European Workshop on Visual Information Processing (EUVIP)\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 5th European Workshop on Visual Information Processing (EUVIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUVIP.2014.7018390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 5th European Workshop on Visual Information Processing (EUVIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUVIP.2014.7018390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种评价图像质量的新概念。该方法基于支持向量回归(SVR)融合。尽管提出的IQM度量方法多种多样,但没有一种有效且充分的度量方法能够在不同的失真情况下表现良好。针对这一问题,提出了一种基于SVR融合的无参考图像质量评估新方法(NR BSVRF)。首先选取5个近期无参考测度构成图像的质量向量,然后通过支持向量回归对质量向量进行融合。SVR被训练成一个用来预测图像质量的模型。获得的结果是有希望的。与现有的无参考图像质量测量相比,它们表现出更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new no-reference image quality assessment based on SVR fusion
This paper presents a new concept of assessing image quality. It is based on support vector regression (SVR) fusion. Despite the variety of the proposed IQM measures, no efficient and sufficient measure gives good performance over different distortions. Motivated by this problem, a new measure for No reference Image Quality Assessment Based on SVR Fusion (NR BSVRF) is constituted. First, five recent no reference measures are selected to form a quality vector of an image, then the quality vector is fused via SVR. The SVR is trained to have a model that is used to predict the image quality. Obtained results are promising. They have shown better performance compared to existing No-reference image quality measures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信