基于神经网络的上消化道内镜胃病变自动检测研究

Sai-yu Wang, Qi He, Ping Zhang, Xin Chen, Siyang Zuo
{"title":"基于神经网络的上消化道内镜胃病变自动检测研究","authors":"Sai-yu Wang, Qi He, Ping Zhang, Xin Chen, Siyang Zuo","doi":"10.1142/s2424905x21410038","DOIUrl":null,"url":null,"abstract":"In this paper, we compared the performance of several neural networks in the classification of early gastric cancer (EGC) images and proposed a method of converting the output value of the network into a calorific value to locate the lesion. The algorithm was improved using transfer learning and fine-tuning principles. The test set accuracy rate reached 0.72, sensitivity reached 0.67, specificity reached 0.77, and precision rate reached 0.78. The experimental results show the potential to meet clinical demands for automatic detection of gastric lesion.","PeriodicalId":447761,"journal":{"name":"J. Medical Robotics Res.","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward Automatic Detection of Gastric Lesion for Upper Gastrointestinal Endoscopy with Neural Network\",\"authors\":\"Sai-yu Wang, Qi He, Ping Zhang, Xin Chen, Siyang Zuo\",\"doi\":\"10.1142/s2424905x21410038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we compared the performance of several neural networks in the classification of early gastric cancer (EGC) images and proposed a method of converting the output value of the network into a calorific value to locate the lesion. The algorithm was improved using transfer learning and fine-tuning principles. The test set accuracy rate reached 0.72, sensitivity reached 0.67, specificity reached 0.77, and precision rate reached 0.78. The experimental results show the potential to meet clinical demands for automatic detection of gastric lesion.\",\"PeriodicalId\":447761,\"journal\":{\"name\":\"J. Medical Robotics Res.\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Medical Robotics Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s2424905x21410038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Medical Robotics Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2424905x21410038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们比较了几种神经网络在早期胃癌(EGC)图像分类中的表现,并提出了一种将网络的输出值转换为热值来定位病变的方法。利用迁移学习和微调原理对算法进行了改进。检测集准确率为0.72,灵敏度为0.67,特异度为0.77,精密度为0.78。实验结果表明,该系统可以满足临床对胃病变自动检测的需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toward Automatic Detection of Gastric Lesion for Upper Gastrointestinal Endoscopy with Neural Network
In this paper, we compared the performance of several neural networks in the classification of early gastric cancer (EGC) images and proposed a method of converting the output value of the network into a calorific value to locate the lesion. The algorithm was improved using transfer learning and fine-tuning principles. The test set accuracy rate reached 0.72, sensitivity reached 0.67, specificity reached 0.77, and precision rate reached 0.78. The experimental results show the potential to meet clinical demands for automatic detection of gastric lesion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信