带裂纹的非均匀板中刚性圆柱形夹杂物的最佳半径

N. Lazarev, A. Tani, P. Sivtsev
{"title":"带裂纹的非均匀板中刚性圆柱形夹杂物的最佳半径","authors":"N. Lazarev, A. Tani, P. Sivtsev","doi":"10.25587/svfu.2019.101.27246","DOIUrl":null,"url":null,"abstract":"We consider equilibrium problems for a cracked inhomogeneous plate with a rigid circular inclusion. Deformation of an elastic matrix is described by the Timoshenko model. The plate is assumed to have a through crack that reaches the boundary of the rigid inclusion. The boundary condition on the crack curve is given in the form of inequality and describes the mutual nonpenetration of the crack faces. For a family of corresponding variational problems, we analyze the dependence of their solutions on the radius of the rigid inclusion. We formulate an optimal control problem with a cost functional defined by an arbitrary continuous functional on the solution space, while the radius of the cylindrical inclusion is chosen as the control parameter. Existence of a solution to the optimal control problem and continuous dependence of the solutions with respect to the radius of the rigid inclusion are proved.","PeriodicalId":177207,"journal":{"name":"Журнал «Математические заметки СВФУ»","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal radius of a rigid cylindrical inclusion in nonhomogeneous plates with a crack\",\"authors\":\"N. Lazarev, A. Tani, P. Sivtsev\",\"doi\":\"10.25587/svfu.2019.101.27246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider equilibrium problems for a cracked inhomogeneous plate with a rigid circular inclusion. Deformation of an elastic matrix is described by the Timoshenko model. The plate is assumed to have a through crack that reaches the boundary of the rigid inclusion. The boundary condition on the crack curve is given in the form of inequality and describes the mutual nonpenetration of the crack faces. For a family of corresponding variational problems, we analyze the dependence of their solutions on the radius of the rigid inclusion. We formulate an optimal control problem with a cost functional defined by an arbitrary continuous functional on the solution space, while the radius of the cylindrical inclusion is chosen as the control parameter. Existence of a solution to the optimal control problem and continuous dependence of the solutions with respect to the radius of the rigid inclusion are proved.\",\"PeriodicalId\":177207,\"journal\":{\"name\":\"Журнал «Математические заметки СВФУ»\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Журнал «Математические заметки СВФУ»\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25587/svfu.2019.101.27246\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Журнал «Математические заметки СВФУ»","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25587/svfu.2019.101.27246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了含刚性圆夹杂的非均匀裂纹板的平衡问题。弹性矩阵的变形用Timoshenko模型来描述。假定该板具有到达刚性夹杂边界的通裂纹。裂纹曲线的边界条件以不等式的形式给出,描述了裂纹面相互不侵彻的情况。对于一类相应的变分问题,我们分析了它们的解与刚性包含半径的依赖关系。在解空间上以任意连续泛函定义代价泛函的最优控制问题,选取柱面包体的半径作为控制参数。证明了最优控制问题解的存在性和解对刚性包含半径的连续依赖性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal radius of a rigid cylindrical inclusion in nonhomogeneous plates with a crack
We consider equilibrium problems for a cracked inhomogeneous plate with a rigid circular inclusion. Deformation of an elastic matrix is described by the Timoshenko model. The plate is assumed to have a through crack that reaches the boundary of the rigid inclusion. The boundary condition on the crack curve is given in the form of inequality and describes the mutual nonpenetration of the crack faces. For a family of corresponding variational problems, we analyze the dependence of their solutions on the radius of the rigid inclusion. We formulate an optimal control problem with a cost functional defined by an arbitrary continuous functional on the solution space, while the radius of the cylindrical inclusion is chosen as the control parameter. Existence of a solution to the optimal control problem and continuous dependence of the solutions with respect to the radius of the rigid inclusion are proved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信