{"title":"考虑工艺变化的无故障CMOS电路的总功率最小化","authors":"Y. Lu, V. Agrawal","doi":"10.1109/VLSI.2008.29","DOIUrl":null,"url":null,"abstract":"Compared to subthreshold leakage, dynamic power is normally much less sensitive to the process variation due to its approximately linear relation to the process parameters. However, the average dynamic power of a circuit optimized by deterministic glitch elimination (using hazard filtering and path balancing) increases because glitches randomly start reappearing under the influence of process variation. Combining existing techniques, we propose a new statistical mixed integer linear programming (MILP) formulation, which combines glitch elimination and dual-threshold design to statistically minimize the total power in a glitch-free circuit under process variation.","PeriodicalId":143886,"journal":{"name":"21st International Conference on VLSI Design (VLSID 2008)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2008-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Total Power Minimization in Glitch-Free CMOS Circuits Considering Process Variation\",\"authors\":\"Y. Lu, V. Agrawal\",\"doi\":\"10.1109/VLSI.2008.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compared to subthreshold leakage, dynamic power is normally much less sensitive to the process variation due to its approximately linear relation to the process parameters. However, the average dynamic power of a circuit optimized by deterministic glitch elimination (using hazard filtering and path balancing) increases because glitches randomly start reappearing under the influence of process variation. Combining existing techniques, we propose a new statistical mixed integer linear programming (MILP) formulation, which combines glitch elimination and dual-threshold design to statistically minimize the total power in a glitch-free circuit under process variation.\",\"PeriodicalId\":143886,\"journal\":{\"name\":\"21st International Conference on VLSI Design (VLSID 2008)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"21st International Conference on VLSI Design (VLSID 2008)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSI.2008.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"21st International Conference on VLSI Design (VLSID 2008)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSI.2008.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Total Power Minimization in Glitch-Free CMOS Circuits Considering Process Variation
Compared to subthreshold leakage, dynamic power is normally much less sensitive to the process variation due to its approximately linear relation to the process parameters. However, the average dynamic power of a circuit optimized by deterministic glitch elimination (using hazard filtering and path balancing) increases because glitches randomly start reappearing under the influence of process variation. Combining existing techniques, we propose a new statistical mixed integer linear programming (MILP) formulation, which combines glitch elimination and dual-threshold design to statistically minimize the total power in a glitch-free circuit under process variation.