解析生长方程及其Genstat 5等价

M. Heinen
{"title":"解析生长方程及其Genstat 5等价","authors":"M. Heinen","doi":"10.18174/njas.v47i1.479","DOIUrl":null,"url":null,"abstract":"Two ways of representing some of the existing growth functions, (the exponential, the monomolecular or Mitscherlich, the logistic or autocatalytic, the Gompertz, and the Richards equations) are compared. In the first, growth is expressed in the parameters mass at time zero W0, mass at time infinity Wf, and a measure for the relative growth rate k. In the second, different parameters are used because of robust parameter optimization (e.g., by the statistical software package Genstat). The relationships between these fitted parameters and the parameters W0, Wf and k are demonstrated. The properties of these models, such as physical meaning of the parameters, properties at the point of inflection (if it exists), and the growth rate at a limit W -> 0, are examined. The second order exponential polynomial was rewritten in such a way that use was made of a proportionality constant, equal to the relative growth rate at the point of inflection. Application of the growth models is demonstrated using data for lettuce grown in a nutrient film system. Finally, it is shown that, except for the exponential polynomial, all growth equations originate from one single equation.","PeriodicalId":324908,"journal":{"name":"Netherlands Journal of Agricultural Science","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Analytical growth equations and their Genstat 5 equivalents\",\"authors\":\"M. Heinen\",\"doi\":\"10.18174/njas.v47i1.479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two ways of representing some of the existing growth functions, (the exponential, the monomolecular or Mitscherlich, the logistic or autocatalytic, the Gompertz, and the Richards equations) are compared. In the first, growth is expressed in the parameters mass at time zero W0, mass at time infinity Wf, and a measure for the relative growth rate k. In the second, different parameters are used because of robust parameter optimization (e.g., by the statistical software package Genstat). The relationships between these fitted parameters and the parameters W0, Wf and k are demonstrated. The properties of these models, such as physical meaning of the parameters, properties at the point of inflection (if it exists), and the growth rate at a limit W -> 0, are examined. The second order exponential polynomial was rewritten in such a way that use was made of a proportionality constant, equal to the relative growth rate at the point of inflection. Application of the growth models is demonstrated using data for lettuce grown in a nutrient film system. Finally, it is shown that, except for the exponential polynomial, all growth equations originate from one single equation.\",\"PeriodicalId\":324908,\"journal\":{\"name\":\"Netherlands Journal of Agricultural Science\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Netherlands Journal of Agricultural Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18174/njas.v47i1.479\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Netherlands Journal of Agricultural Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18174/njas.v47i1.479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

比较了两种表示一些现有生长函数的方法(指数、单分子或Mitscherlich、逻辑或自催化、Gompertz和Richards方程)。在第一种方法中,增长用时间为零时的质量W0、时间为无限时的质量Wf和相对增长率k的度量来表示。在第二种方法中,由于鲁棒参数优化(例如,通过统计软件包Genstat),使用了不同的参数。说明了这些拟合参数与参数W0、Wf和k之间的关系。这些模型的性质,如参数的物理意义、拐点的性质(如果存在的话)和极限W -> 0时的增长率。二阶指数多项式被改写成这样一种方式,即使用比例常数,等于拐点的相对增长率。利用在营养膜系统中生长的生菜的数据来证明生长模型的应用。最后,证明了除指数多项式外,所有的增长方程都起源于一个方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analytical growth equations and their Genstat 5 equivalents
Two ways of representing some of the existing growth functions, (the exponential, the monomolecular or Mitscherlich, the logistic or autocatalytic, the Gompertz, and the Richards equations) are compared. In the first, growth is expressed in the parameters mass at time zero W0, mass at time infinity Wf, and a measure for the relative growth rate k. In the second, different parameters are used because of robust parameter optimization (e.g., by the statistical software package Genstat). The relationships between these fitted parameters and the parameters W0, Wf and k are demonstrated. The properties of these models, such as physical meaning of the parameters, properties at the point of inflection (if it exists), and the growth rate at a limit W -> 0, are examined. The second order exponential polynomial was rewritten in such a way that use was made of a proportionality constant, equal to the relative growth rate at the point of inflection. Application of the growth models is demonstrated using data for lettuce grown in a nutrient film system. Finally, it is shown that, except for the exponential polynomial, all growth equations originate from one single equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信