{"title":"V2G业务中双向无线电力传输系统的预测有源潮流控制","authors":"A. Mohamed, A. Berzoy, O. Mohammed","doi":"10.1109/SPEC.2016.7846217","DOIUrl":null,"url":null,"abstract":"This paper presents a new methodology of active power flow control for a bidirectional inductive wireless power transfer (BIWPT) system in electric vehicle (EV) ancillary services based on the system analytical model. The controller exists on the vehicle side to consider the EV's owner's desire for providing energy to the other sources. The owner is able to choose between three different control modes; Charge, Discharge and Abstain (no interaction). The controller considers the EV's battery state-of-charge (SOC) which is provided by the battery management system (BMS). The control parameters are predicted based on a simple and an accurate analytical model for the BIWPT system. The misalignment effect on the controller performance is considered by adaptively estimating the wireless pads mutual inductance. The proposed controller is implemented and tested by means of simulations and experiments for stationary and quasi-dynamic wireless power transfer situations.","PeriodicalId":403316,"journal":{"name":"2016 IEEE 2nd Annual Southern Power Electronics Conference (SPEC)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Predictive active power-flow control of two-way wireless power transfer system in V2G services\",\"authors\":\"A. Mohamed, A. Berzoy, O. Mohammed\",\"doi\":\"10.1109/SPEC.2016.7846217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new methodology of active power flow control for a bidirectional inductive wireless power transfer (BIWPT) system in electric vehicle (EV) ancillary services based on the system analytical model. The controller exists on the vehicle side to consider the EV's owner's desire for providing energy to the other sources. The owner is able to choose between three different control modes; Charge, Discharge and Abstain (no interaction). The controller considers the EV's battery state-of-charge (SOC) which is provided by the battery management system (BMS). The control parameters are predicted based on a simple and an accurate analytical model for the BIWPT system. The misalignment effect on the controller performance is considered by adaptively estimating the wireless pads mutual inductance. The proposed controller is implemented and tested by means of simulations and experiments for stationary and quasi-dynamic wireless power transfer situations.\",\"PeriodicalId\":403316,\"journal\":{\"name\":\"2016 IEEE 2nd Annual Southern Power Electronics Conference (SPEC)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 2nd Annual Southern Power Electronics Conference (SPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPEC.2016.7846217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 2nd Annual Southern Power Electronics Conference (SPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPEC.2016.7846217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Predictive active power-flow control of two-way wireless power transfer system in V2G services
This paper presents a new methodology of active power flow control for a bidirectional inductive wireless power transfer (BIWPT) system in electric vehicle (EV) ancillary services based on the system analytical model. The controller exists on the vehicle side to consider the EV's owner's desire for providing energy to the other sources. The owner is able to choose between three different control modes; Charge, Discharge and Abstain (no interaction). The controller considers the EV's battery state-of-charge (SOC) which is provided by the battery management system (BMS). The control parameters are predicted based on a simple and an accurate analytical model for the BIWPT system. The misalignment effect on the controller performance is considered by adaptively estimating the wireless pads mutual inductance. The proposed controller is implemented and tested by means of simulations and experiments for stationary and quasi-dynamic wireless power transfer situations.