Samuel Kernan Freire, Mina Foosherian, Chaofan Wang, E. Niforatos
{"title":"利用大型语言模型为工厂中的认知助手服务","authors":"Samuel Kernan Freire, Mina Foosherian, Chaofan Wang, E. Niforatos","doi":"10.1145/3571884.3604313","DOIUrl":null,"url":null,"abstract":"As agile manufacturing expands and workforce mobility increases, the importance of efficient knowledge transfer among factory workers grows. Cognitive Assistants (CAs) with Large Language Models (LLMs), like GPT-3.5, can bridge knowledge gaps and improve worker performance in manufacturing settings. This study investigates the opportunities, risks, and user acceptance of LLM-powered CAs in two factory contexts: textile and detergent production. Several opportunities and risks are identified through a literature review, proof-of-concept implementation, and focus group sessions. Factory representatives raise concerns regarding data security, privacy, and the reliability of LLMs in high-stake environments. By following design guidelines regarding persistent memory, real-time data integration, security, privacy, and ethical concerns, LLM-powered CAs can become valuable assets in manufacturing settings and other industries.","PeriodicalId":127379,"journal":{"name":"Proceedings of the 5th International Conference on Conversational User Interfaces","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Harnessing Large Language Models for Cognitive Assistants in Factories\",\"authors\":\"Samuel Kernan Freire, Mina Foosherian, Chaofan Wang, E. Niforatos\",\"doi\":\"10.1145/3571884.3604313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As agile manufacturing expands and workforce mobility increases, the importance of efficient knowledge transfer among factory workers grows. Cognitive Assistants (CAs) with Large Language Models (LLMs), like GPT-3.5, can bridge knowledge gaps and improve worker performance in manufacturing settings. This study investigates the opportunities, risks, and user acceptance of LLM-powered CAs in two factory contexts: textile and detergent production. Several opportunities and risks are identified through a literature review, proof-of-concept implementation, and focus group sessions. Factory representatives raise concerns regarding data security, privacy, and the reliability of LLMs in high-stake environments. By following design guidelines regarding persistent memory, real-time data integration, security, privacy, and ethical concerns, LLM-powered CAs can become valuable assets in manufacturing settings and other industries.\",\"PeriodicalId\":127379,\"journal\":{\"name\":\"Proceedings of the 5th International Conference on Conversational User Interfaces\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th International Conference on Conversational User Interfaces\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3571884.3604313\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th International Conference on Conversational User Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3571884.3604313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Harnessing Large Language Models for Cognitive Assistants in Factories
As agile manufacturing expands and workforce mobility increases, the importance of efficient knowledge transfer among factory workers grows. Cognitive Assistants (CAs) with Large Language Models (LLMs), like GPT-3.5, can bridge knowledge gaps and improve worker performance in manufacturing settings. This study investigates the opportunities, risks, and user acceptance of LLM-powered CAs in two factory contexts: textile and detergent production. Several opportunities and risks are identified through a literature review, proof-of-concept implementation, and focus group sessions. Factory representatives raise concerns regarding data security, privacy, and the reliability of LLMs in high-stake environments. By following design guidelines regarding persistent memory, real-time data integration, security, privacy, and ethical concerns, LLM-powered CAs can become valuable assets in manufacturing settings and other industries.