基于实时价格的电动汽车多目标控制策略研究

Tu Yi-yun
{"title":"基于实时价格的电动汽车多目标控制策略研究","authors":"Tu Yi-yun","doi":"10.1109/ICIEA.2016.7603865","DOIUrl":null,"url":null,"abstract":"This paper establish mathematical models aimed at minimizing the peak-valley difference of power load and maximizing the profit of consumer for the participation of EVs on the base of adopting real-time price in electricity market. Then solve it by Particle Swarm Optimization(PSO) algorithm, obtain load curves between EVs and power grid. Results show that effect of load regulation and value of profit have obvious variation on different weight coefficients, thus realize multi-target control strategy.","PeriodicalId":283114,"journal":{"name":"2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The research on multi-target control strategy of EVs based on real-time price\",\"authors\":\"Tu Yi-yun\",\"doi\":\"10.1109/ICIEA.2016.7603865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper establish mathematical models aimed at minimizing the peak-valley difference of power load and maximizing the profit of consumer for the participation of EVs on the base of adopting real-time price in electricity market. Then solve it by Particle Swarm Optimization(PSO) algorithm, obtain load curves between EVs and power grid. Results show that effect of load regulation and value of profit have obvious variation on different weight coefficients, thus realize multi-target control strategy.\",\"PeriodicalId\":283114,\"journal\":{\"name\":\"2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIEA.2016.7603865\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA.2016.7603865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文在电力市场采用实时电价的基础上,建立了以电力负荷峰谷差最小、消费者利润最大化为目标的电动汽车参与的数学模型。然后利用粒子群算法求解,得到电动汽车与电网之间的负荷曲线。结果表明,负荷调节效果和利润值在不同权重系数下有明显变化,从而实现多目标控制策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The research on multi-target control strategy of EVs based on real-time price
This paper establish mathematical models aimed at minimizing the peak-valley difference of power load and maximizing the profit of consumer for the participation of EVs on the base of adopting real-time price in electricity market. Then solve it by Particle Swarm Optimization(PSO) algorithm, obtain load curves between EVs and power grid. Results show that effect of load regulation and value of profit have obvious variation on different weight coefficients, thus realize multi-target control strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信