Yasunori Toshimitsu, Kento Kawaharazuka, Akihiro Miki, K. Okada, M. Inaba
{"title":"鲁棒机器人自识别与视觉伺服的密集图像雅可比估计","authors":"Yasunori Toshimitsu, Kento Kawaharazuka, Akihiro Miki, K. Okada, M. Inaba","doi":"10.1109/IROS47612.2022.9981868","DOIUrl":null,"url":null,"abstract":"For robots to move in the real world, they must first correctly understand the state of its own body and the tools that it holds. In this research, we propose DIJE, an algorithm to estimate the image Jacobian for every pixel. It is based on an optical flow calculation and a simplified Kalman Filter that can be efficiently run on the whole image in real time. It does not rely on markers nor knowledge of the robotic structure. We use the DIJE in a self-recognition process which can robustly distinguish between movement by the robot and by external entities, even when the motion overlaps. We also propose a visual servoing controller based on DIJE, which can learn to control the robot's body to conduct reaching movements or bimanual tool-tip control. The proposed algorithms were implemented on a physical musculoskeletal robot and its performance was verified. We believe that such global estimation of the visuomotor policy has the potential to be extended into a more general framework for manipulation.","PeriodicalId":431373,"journal":{"name":"2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DIJE: Dense Image Jacobian Estimation for Robust Robotic Self-Recognition and Visual Servoing\",\"authors\":\"Yasunori Toshimitsu, Kento Kawaharazuka, Akihiro Miki, K. Okada, M. Inaba\",\"doi\":\"10.1109/IROS47612.2022.9981868\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For robots to move in the real world, they must first correctly understand the state of its own body and the tools that it holds. In this research, we propose DIJE, an algorithm to estimate the image Jacobian for every pixel. It is based on an optical flow calculation and a simplified Kalman Filter that can be efficiently run on the whole image in real time. It does not rely on markers nor knowledge of the robotic structure. We use the DIJE in a self-recognition process which can robustly distinguish between movement by the robot and by external entities, even when the motion overlaps. We also propose a visual servoing controller based on DIJE, which can learn to control the robot's body to conduct reaching movements or bimanual tool-tip control. The proposed algorithms were implemented on a physical musculoskeletal robot and its performance was verified. We believe that such global estimation of the visuomotor policy has the potential to be extended into a more general framework for manipulation.\",\"PeriodicalId\":431373,\"journal\":{\"name\":\"2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"volume\":\"119 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS47612.2022.9981868\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS47612.2022.9981868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DIJE: Dense Image Jacobian Estimation for Robust Robotic Self-Recognition and Visual Servoing
For robots to move in the real world, they must first correctly understand the state of its own body and the tools that it holds. In this research, we propose DIJE, an algorithm to estimate the image Jacobian for every pixel. It is based on an optical flow calculation and a simplified Kalman Filter that can be efficiently run on the whole image in real time. It does not rely on markers nor knowledge of the robotic structure. We use the DIJE in a self-recognition process which can robustly distinguish between movement by the robot and by external entities, even when the motion overlaps. We also propose a visual servoing controller based on DIJE, which can learn to control the robot's body to conduct reaching movements or bimanual tool-tip control. The proposed algorithms were implemented on a physical musculoskeletal robot and its performance was verified. We believe that such global estimation of the visuomotor policy has the potential to be extended into a more general framework for manipulation.