一维时滞微分方程的参数分析,固定a < 0

Ai-kun Gao
{"title":"一维时滞微分方程的参数分析,固定a < 0","authors":"Ai-kun Gao","doi":"10.1109/QR2MSE.2013.6626001","DOIUrl":null,"url":null,"abstract":"In this paper, we discuss the characteristic equation of one dimensional delay differential equation. We provide a Hopf bifurcation diagram of the zero solution of the one dimensional delay differentia equation, by using τ-D decomposition. According to the partition of the roots of the characteristic equation, one can determine the stability domain of the equilibrium and Hopf bifurcation curves in the (τ, a, b)-parameter space.","PeriodicalId":140736,"journal":{"name":"2013 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (QR2MSE)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Notice of RetractionParameter analysis of one dimensional differential equation with delay by fixed a < 0\",\"authors\":\"Ai-kun Gao\",\"doi\":\"10.1109/QR2MSE.2013.6626001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we discuss the characteristic equation of one dimensional delay differential equation. We provide a Hopf bifurcation diagram of the zero solution of the one dimensional delay differentia equation, by using τ-D decomposition. According to the partition of the roots of the characteristic equation, one can determine the stability domain of the equilibrium and Hopf bifurcation curves in the (τ, a, b)-parameter space.\",\"PeriodicalId\":140736,\"journal\":{\"name\":\"2013 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (QR2MSE)\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (QR2MSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/QR2MSE.2013.6626001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (QR2MSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QR2MSE.2013.6626001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了一维时滞微分方程的特征方程。利用τ-D分解,给出了一维时滞微分方程零解的Hopf分岔图。根据特征方程根的划分,可以确定(τ, a, b)参数空间中平衡曲线和Hopf分岔曲线的稳定域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Notice of RetractionParameter analysis of one dimensional differential equation with delay by fixed a < 0
In this paper, we discuss the characteristic equation of one dimensional delay differential equation. We provide a Hopf bifurcation diagram of the zero solution of the one dimensional delay differentia equation, by using τ-D decomposition. According to the partition of the roots of the characteristic equation, one can determine the stability domain of the equilibrium and Hopf bifurcation curves in the (τ, a, b)-parameter space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信