输出数据丢失的网络控制系统迭代学习控制的一种新的连续更新方案

Zhiyang Zhang, Zhenxuan Li, Shuang Guo, Chenkun Yin
{"title":"输出数据丢失的网络控制系统迭代学习控制的一种新的连续更新方案","authors":"Zhiyang Zhang, Zhenxuan Li, Shuang Guo, Chenkun Yin","doi":"10.1109/DDCLS58216.2023.10167132","DOIUrl":null,"url":null,"abstract":"This work investigates the problem of random successive data dropout at the output side of stochastic linear systems and presents a novel successive updating scheme (SUS) based on iterative learning control (ILC) to avoid control failures due to data loss. In particular, the successively lost output data in the latest iteration is compensated via predictive information estimated successfully with the same time instant label in the previous iteration by the multi-step predictive model. Mathematical induction is used to demonstrate the convergence of the proposed ILC scheme. Lastly, a simulation example is provided to back up the theoretical analysis.","PeriodicalId":415532,"journal":{"name":"2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Successive Updating Scheme of Iterative Learning Control for Networked Control System with Output Data Dropouts\",\"authors\":\"Zhiyang Zhang, Zhenxuan Li, Shuang Guo, Chenkun Yin\",\"doi\":\"10.1109/DDCLS58216.2023.10167132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work investigates the problem of random successive data dropout at the output side of stochastic linear systems and presents a novel successive updating scheme (SUS) based on iterative learning control (ILC) to avoid control failures due to data loss. In particular, the successively lost output data in the latest iteration is compensated via predictive information estimated successfully with the same time instant label in the previous iteration by the multi-step predictive model. Mathematical induction is used to demonstrate the convergence of the proposed ILC scheme. Lastly, a simulation example is provided to back up the theoretical analysis.\",\"PeriodicalId\":415532,\"journal\":{\"name\":\"2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DDCLS58216.2023.10167132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDCLS58216.2023.10167132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了随机线性系统输出端的随机连续数据丢失问题,提出了一种基于迭代学习控制(ILC)的连续更新方案(SUS),以避免由于数据丢失而导致的控制失效。特别是,在最近一次迭代中连续丢失的输出数据,通过多步预测模型在前一次迭代中以相同的即时标签成功估计的预测信息进行补偿。用数学归纳法证明了所提出的ILC方案的收敛性。最后,给出了一个仿真实例来支持理论分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Successive Updating Scheme of Iterative Learning Control for Networked Control System with Output Data Dropouts
This work investigates the problem of random successive data dropout at the output side of stochastic linear systems and presents a novel successive updating scheme (SUS) based on iterative learning control (ILC) to avoid control failures due to data loss. In particular, the successively lost output data in the latest iteration is compensated via predictive information estimated successfully with the same time instant label in the previous iteration by the multi-step predictive model. Mathematical induction is used to demonstrate the convergence of the proposed ILC scheme. Lastly, a simulation example is provided to back up the theoretical analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信