{"title":"基于rcm的G.729语音编解码器的高效固定码本搜索","authors":"C. Yeh","doi":"10.1109/ChinaSIP.2014.6889205","DOIUrl":null,"url":null,"abstract":"This work aims to present a combined version of reduced candidate mechanism (RCM) and iteration-free pulse replacement (IFPR) as a novel and efficient way to enhance the performance of algebraic codebook search in an algebraic code-excited linear-prediction (ACELP) speech coder. As the first step, individual pulse contribution in each track is given by RCM, and the value of N is then specified. Subsequently, the replacement of a pulse is performed through the search over the sorted top N pulses by IFPR, and those of 2 to 4 pulses are carried out by a standard IFPR. Implemented on a G.729A speech codec, this proposal requires as few as 24 searches, a search load tantamount to 7.5% of G.729A, 37.5% of the global pulse replacement method (iteration=2), 50% of IFPR, but still provides a comparable speech quality in any case. The aim of significant search performance improvement is achieved in this work.","PeriodicalId":248977,"journal":{"name":"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An efficient fixed codebook search for G.729 speech codec derived from RCM-based search algorithm\",\"authors\":\"C. Yeh\",\"doi\":\"10.1109/ChinaSIP.2014.6889205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work aims to present a combined version of reduced candidate mechanism (RCM) and iteration-free pulse replacement (IFPR) as a novel and efficient way to enhance the performance of algebraic codebook search in an algebraic code-excited linear-prediction (ACELP) speech coder. As the first step, individual pulse contribution in each track is given by RCM, and the value of N is then specified. Subsequently, the replacement of a pulse is performed through the search over the sorted top N pulses by IFPR, and those of 2 to 4 pulses are carried out by a standard IFPR. Implemented on a G.729A speech codec, this proposal requires as few as 24 searches, a search load tantamount to 7.5% of G.729A, 37.5% of the global pulse replacement method (iteration=2), 50% of IFPR, but still provides a comparable speech quality in any case. The aim of significant search performance improvement is achieved in this work.\",\"PeriodicalId\":248977,\"journal\":{\"name\":\"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)\",\"volume\":\"130 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ChinaSIP.2014.6889205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ChinaSIP.2014.6889205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An efficient fixed codebook search for G.729 speech codec derived from RCM-based search algorithm
This work aims to present a combined version of reduced candidate mechanism (RCM) and iteration-free pulse replacement (IFPR) as a novel and efficient way to enhance the performance of algebraic codebook search in an algebraic code-excited linear-prediction (ACELP) speech coder. As the first step, individual pulse contribution in each track is given by RCM, and the value of N is then specified. Subsequently, the replacement of a pulse is performed through the search over the sorted top N pulses by IFPR, and those of 2 to 4 pulses are carried out by a standard IFPR. Implemented on a G.729A speech codec, this proposal requires as few as 24 searches, a search load tantamount to 7.5% of G.729A, 37.5% of the global pulse replacement method (iteration=2), 50% of IFPR, but still provides a comparable speech quality in any case. The aim of significant search performance improvement is achieved in this work.