基于crnn的低功耗关键字识别系统的FPGA实现

Limo Guo, PengXu Lin, Lei Guo, Bo Liu
{"title":"基于crnn的低功耗关键字识别系统的FPGA实现","authors":"Limo Guo, PengXu Lin, Lei Guo, Bo Liu","doi":"10.1109/ASICON52560.2021.9620311","DOIUrl":null,"url":null,"abstract":"A low-power and high-precision reconfigurable processor based on optimized convolutional recurrent neural network is proposed for noise robust keyword recognition. In order to create a low-power and high-precision system, we implemented a reconfigurable CRNN and quantization network on FPGA, which greatly reduced the use of DSP, BRAM, LUT and other resources. Our system can identify some keywords, such as \"yes\", \"no\", \"down\" and \"up\" within 50ms, and at a signal-to-noise ratio of-5dB, the actual accuracy reaches 86.4%.","PeriodicalId":233584,"journal":{"name":"2021 IEEE 14th International Conference on ASIC (ASICON)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Implementation of a CRNN-based low-power keyword recognition system on FPGA\",\"authors\":\"Limo Guo, PengXu Lin, Lei Guo, Bo Liu\",\"doi\":\"10.1109/ASICON52560.2021.9620311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A low-power and high-precision reconfigurable processor based on optimized convolutional recurrent neural network is proposed for noise robust keyword recognition. In order to create a low-power and high-precision system, we implemented a reconfigurable CRNN and quantization network on FPGA, which greatly reduced the use of DSP, BRAM, LUT and other resources. Our system can identify some keywords, such as \\\"yes\\\", \\\"no\\\", \\\"down\\\" and \\\"up\\\" within 50ms, and at a signal-to-noise ratio of-5dB, the actual accuracy reaches 86.4%.\",\"PeriodicalId\":233584,\"journal\":{\"name\":\"2021 IEEE 14th International Conference on ASIC (ASICON)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 14th International Conference on ASIC (ASICON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASICON52560.2021.9620311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 14th International Conference on ASIC (ASICON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASICON52560.2021.9620311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于优化卷积递归神经网络的低功耗高精度可重构处理器,用于噪声鲁棒关键字识别。为了创建一个低功耗、高精度的系统,我们在FPGA上实现了可重构的CRNN和量化网络,大大减少了DSP、BRAM、LUT等资源的使用。我们的系统可以在50ms内识别出“是”、“否”、“下”、“上”等关键词,在信噪比为5db的情况下,实际准确率达到86.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementation of a CRNN-based low-power keyword recognition system on FPGA
A low-power and high-precision reconfigurable processor based on optimized convolutional recurrent neural network is proposed for noise robust keyword recognition. In order to create a low-power and high-precision system, we implemented a reconfigurable CRNN and quantization network on FPGA, which greatly reduced the use of DSP, BRAM, LUT and other resources. Our system can identify some keywords, such as "yes", "no", "down" and "up" within 50ms, and at a signal-to-noise ratio of-5dB, the actual accuracy reaches 86.4%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信