{"title":"身体传感器网络中功率感知通信的贪婪缓冲区分配算法","authors":"Hassan Ghasemzadeh, R. Jafari","doi":"10.1145/1878961.1878998","DOIUrl":null,"url":null,"abstract":"Monitoring human movements using wireless sensory devices promises to revolutionize the delivery of healthcare services. In spite of their potentials for many application domains, power requirements and wearability have limited the commercialization of these systems. In this paper, we propose a novel approach for optimizing communication energy by reducing inter-node data transmissions. This is accomplished by introducing buffers that limit communication to short bursts, and therefore decrease power usage and simplify the communication. Our buffer allocation is a greedy algorithm that can operate both in a centralized and distributed architecture. We experimentally demonstrate the effectiveness of our power reduction techniques. Our results show that, compared with an unbuffered system, our system achieves more than 30% reduction in energy consumption.","PeriodicalId":118816,"journal":{"name":"2010 IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A greedy buffer allocation algorithm for power-aware communication in body sensor networks\",\"authors\":\"Hassan Ghasemzadeh, R. Jafari\",\"doi\":\"10.1145/1878961.1878998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Monitoring human movements using wireless sensory devices promises to revolutionize the delivery of healthcare services. In spite of their potentials for many application domains, power requirements and wearability have limited the commercialization of these systems. In this paper, we propose a novel approach for optimizing communication energy by reducing inter-node data transmissions. This is accomplished by introducing buffers that limit communication to short bursts, and therefore decrease power usage and simplify the communication. Our buffer allocation is a greedy algorithm that can operate both in a centralized and distributed architecture. We experimentally demonstrate the effectiveness of our power reduction techniques. Our results show that, compared with an unbuffered system, our system achieves more than 30% reduction in energy consumption.\",\"PeriodicalId\":118816,\"journal\":{\"name\":\"2010 IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1878961.1878998\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1878961.1878998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A greedy buffer allocation algorithm for power-aware communication in body sensor networks
Monitoring human movements using wireless sensory devices promises to revolutionize the delivery of healthcare services. In spite of their potentials for many application domains, power requirements and wearability have limited the commercialization of these systems. In this paper, we propose a novel approach for optimizing communication energy by reducing inter-node data transmissions. This is accomplished by introducing buffers that limit communication to short bursts, and therefore decrease power usage and simplify the communication. Our buffer allocation is a greedy algorithm that can operate both in a centralized and distributed architecture. We experimentally demonstrate the effectiveness of our power reduction techniques. Our results show that, compared with an unbuffered system, our system achieves more than 30% reduction in energy consumption.