Hitomi Tanaka, Yuta Aiba, T. Maeda, Kensuke Ota, Y. Higashi, K. Sawa, F. Kikushima, Masayuki Miura, T. Sanuki
{"title":"迈向每单元7位:单晶通道与低温操作相结合的3D快闪记忆体协同改进","authors":"Hitomi Tanaka, Yuta Aiba, T. Maeda, Kensuke Ota, Y. Higashi, K. Sawa, F. Kikushima, Masayuki Miura, T. Sanuki","doi":"10.1109/IMW52921.2022.9779301","DOIUrl":null,"url":null,"abstract":"In this paper, it is shown that the combination of single-crystal channel and cryogenic operation at 77 K using liquid nitrogen improves the cell transistor characteristics and the storage performance of 3D Flash memory. Compared to the cryogenic operation with poly-Si channels, that we have already reported, the cryogenic operation with single-crystal channels results in a steepening of the cell transistor subthreshold slope and reduced read noise. In particular, read noise is significantly suppressed to one-third due to the synergistic effect of the improvement by single-crystal and the cryogenic operation, compared with poly-Si channel in room temperature. Furthermore, data retention is improved at cryogenic temperature compared to room temperature. These improvements lead to a narrower Vth distribution of the cell, which enables bit-cost scaling through a multi-level cell. An ultra-multi-level cell of 7 bits per cell is successfully demonstrated for the first time, and its feasibleness in future storage products is shown.","PeriodicalId":132074,"journal":{"name":"2022 IEEE International Memory Workshop (IMW)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward 7 Bits per Cell: Synergistic Improvement of 3D Flash Memory by Combination of Single-crystal Channel and Cryogenic Operation\",\"authors\":\"Hitomi Tanaka, Yuta Aiba, T. Maeda, Kensuke Ota, Y. Higashi, K. Sawa, F. Kikushima, Masayuki Miura, T. Sanuki\",\"doi\":\"10.1109/IMW52921.2022.9779301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, it is shown that the combination of single-crystal channel and cryogenic operation at 77 K using liquid nitrogen improves the cell transistor characteristics and the storage performance of 3D Flash memory. Compared to the cryogenic operation with poly-Si channels, that we have already reported, the cryogenic operation with single-crystal channels results in a steepening of the cell transistor subthreshold slope and reduced read noise. In particular, read noise is significantly suppressed to one-third due to the synergistic effect of the improvement by single-crystal and the cryogenic operation, compared with poly-Si channel in room temperature. Furthermore, data retention is improved at cryogenic temperature compared to room temperature. These improvements lead to a narrower Vth distribution of the cell, which enables bit-cost scaling through a multi-level cell. An ultra-multi-level cell of 7 bits per cell is successfully demonstrated for the first time, and its feasibleness in future storage products is shown.\",\"PeriodicalId\":132074,\"journal\":{\"name\":\"2022 IEEE International Memory Workshop (IMW)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Memory Workshop (IMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMW52921.2022.9779301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Memory Workshop (IMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMW52921.2022.9779301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Toward 7 Bits per Cell: Synergistic Improvement of 3D Flash Memory by Combination of Single-crystal Channel and Cryogenic Operation
In this paper, it is shown that the combination of single-crystal channel and cryogenic operation at 77 K using liquid nitrogen improves the cell transistor characteristics and the storage performance of 3D Flash memory. Compared to the cryogenic operation with poly-Si channels, that we have already reported, the cryogenic operation with single-crystal channels results in a steepening of the cell transistor subthreshold slope and reduced read noise. In particular, read noise is significantly suppressed to one-third due to the synergistic effect of the improvement by single-crystal and the cryogenic operation, compared with poly-Si channel in room temperature. Furthermore, data retention is improved at cryogenic temperature compared to room temperature. These improvements lead to a narrower Vth distribution of the cell, which enables bit-cost scaling through a multi-level cell. An ultra-multi-level cell of 7 bits per cell is successfully demonstrated for the first time, and its feasibleness in future storage products is shown.