APREP-DM:基于CRISP-DM的传感器数据分析自动化预处理框架

Hiroko Nagashima, Yuka Kato
{"title":"APREP-DM:基于CRISP-DM的传感器数据分析自动化预处理框架","authors":"Hiroko Nagashima, Yuka Kato","doi":"10.1109/PERCOMW.2019.8730785","DOIUrl":null,"url":null,"abstract":"The need for analyzing data is increasing at an unprecedented rate. Well-known examples include customer behavioral patterns in shops, the autonomous motion of robots, and fault prediction. Pre-processing of data is essential for achieving accurate results. This includes detecting outliers, handling missing data, and data formatting, integration, and normalization. Pre-processing is necessary for eliminating ambiguities and inconsistencies. We here propose a framework called APREP-DM (for the Automated PRE-Processing for Data Mining) applicable to data analysis, including using sensor data. We evaluate two types of perspectives: (1) considering pre-processing in a test-case scenario involving pedestrian trajectory tracking, and (2) comparing APREP-DM with the outcomes of other existing frameworks from four different perspectives. We conclude that APREP-DM is suitable for analyzing sensor data.","PeriodicalId":437017,"journal":{"name":"2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"APREP-DM: a Framework for Automating the Pre-Processing of a Sensor Data Analysis based on CRISP-DM\",\"authors\":\"Hiroko Nagashima, Yuka Kato\",\"doi\":\"10.1109/PERCOMW.2019.8730785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The need for analyzing data is increasing at an unprecedented rate. Well-known examples include customer behavioral patterns in shops, the autonomous motion of robots, and fault prediction. Pre-processing of data is essential for achieving accurate results. This includes detecting outliers, handling missing data, and data formatting, integration, and normalization. Pre-processing is necessary for eliminating ambiguities and inconsistencies. We here propose a framework called APREP-DM (for the Automated PRE-Processing for Data Mining) applicable to data analysis, including using sensor data. We evaluate two types of perspectives: (1) considering pre-processing in a test-case scenario involving pedestrian trajectory tracking, and (2) comparing APREP-DM with the outcomes of other existing frameworks from four different perspectives. We conclude that APREP-DM is suitable for analyzing sensor data.\",\"PeriodicalId\":437017,\"journal\":{\"name\":\"2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PERCOMW.2019.8730785\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PERCOMW.2019.8730785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

分析数据的需求正以前所未有的速度增长。众所周知的例子包括商店中的顾客行为模式、机器人的自主运动和故障预测。数据的预处理对于获得准确的结果至关重要。这包括检测异常值、处理缺失数据以及数据格式化、集成和规范化。预处理对于消除歧义和不一致是必要的。我们在这里提出了一个名为APREP-DM(数据挖掘自动化预处理)的框架,适用于数据分析,包括使用传感器数据。我们评估了两种类型的视角:(1)在涉及行人轨迹跟踪的测试用例场景中考虑预处理;(2)从四个不同的角度将APREP-DM与其他现有框架的结果进行比较。我们得出结论,APREP-DM适用于分析传感器数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
APREP-DM: a Framework for Automating the Pre-Processing of a Sensor Data Analysis based on CRISP-DM
The need for analyzing data is increasing at an unprecedented rate. Well-known examples include customer behavioral patterns in shops, the autonomous motion of robots, and fault prediction. Pre-processing of data is essential for achieving accurate results. This includes detecting outliers, handling missing data, and data formatting, integration, and normalization. Pre-processing is necessary for eliminating ambiguities and inconsistencies. We here propose a framework called APREP-DM (for the Automated PRE-Processing for Data Mining) applicable to data analysis, including using sensor data. We evaluate two types of perspectives: (1) considering pre-processing in a test-case scenario involving pedestrian trajectory tracking, and (2) comparing APREP-DM with the outcomes of other existing frameworks from four different perspectives. We conclude that APREP-DM is suitable for analyzing sensor data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信