基于神经网络的电弧炉电极系统模型参考自适应控制

Shi-feng Zhang, Shao-de Zhang, L. Kun, Zheng Xiao
{"title":"基于神经网络的电弧炉电极系统模型参考自适应控制","authors":"Shi-feng Zhang, Shao-de Zhang, L. Kun, Zheng Xiao","doi":"10.1109/IPEMC.2006.4778237","DOIUrl":null,"url":null,"abstract":"Control strategy of model reference adaptive control (MRAC) based on radial basis function neural network (RBFNN) online identification is proposed, and a controller is also designed. Which in accordance with the characteristics of the electrode system in electric arc furnace as the high nonlinearity, time-variant, uncertainty and multivariable input and output coupling. The validity of control strategy is verified by result of experimentation","PeriodicalId":448315,"journal":{"name":"2006 CES/IEEE 5th International Power Electronics and Motion Control Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Model Reference Adaptive Control based on Neural Network for Electrode System in Electric Arc Furnace\",\"authors\":\"Shi-feng Zhang, Shao-de Zhang, L. Kun, Zheng Xiao\",\"doi\":\"10.1109/IPEMC.2006.4778237\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Control strategy of model reference adaptive control (MRAC) based on radial basis function neural network (RBFNN) online identification is proposed, and a controller is also designed. Which in accordance with the characteristics of the electrode system in electric arc furnace as the high nonlinearity, time-variant, uncertainty and multivariable input and output coupling. The validity of control strategy is verified by result of experimentation\",\"PeriodicalId\":448315,\"journal\":{\"name\":\"2006 CES/IEEE 5th International Power Electronics and Motion Control Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 CES/IEEE 5th International Power Electronics and Motion Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPEMC.2006.4778237\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 CES/IEEE 5th International Power Electronics and Motion Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPEMC.2006.4778237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了基于径向基函数神经网络(RBFNN)在线辨识的模型参考自适应控制(MRAC)控制策略,并设计了控制器。针对电弧炉电极系统具有高非线性、时变、不确定性和多变量输入输出耦合的特点。实验结果验证了控制策略的有效性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model Reference Adaptive Control based on Neural Network for Electrode System in Electric Arc Furnace
Control strategy of model reference adaptive control (MRAC) based on radial basis function neural network (RBFNN) online identification is proposed, and a controller is also designed. Which in accordance with the characteristics of the electrode system in electric arc furnace as the high nonlinearity, time-variant, uncertainty and multivariable input and output coupling. The validity of control strategy is verified by result of experimentation
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信