https://jurnal.fmipa.unila.ac.id/komputasi/issue/view/146/showToc

Aisyah Nur Fahira, Rani Nooraeni
{"title":"https://jurnal.fmipa.unila.ac.id/komputasi/issue/view/146/showToc","authors":"Aisyah Nur Fahira, Rani Nooraeni","doi":"10.23960/komputasi.v11i1.3175","DOIUrl":null,"url":null,"abstract":"Spatio Temporal DBSCAN (ST-DBSCAN) adalah metode yang dapat diterapkan pada data spasial yang diikuti dengan atribut temporal. Hasil dari ST-DBSCAN tergantung pada penentuan awal tiga parameter. Inisial parameter yang tidak optimal menyebabkan hasil pengelompokan dengan ST-DBSCAN tidak mencapai solusi yang global optimum. Penelitian ini bertujuan untuk mengoptimalkan penentuan parameter awal pada ST-DBSCAN menggunakan metode k Nearest neighborhood dan Algoritma Genetika yang diuji menggunakan data simulasi kemudian diterapkan dalam pengelompokan wilayah bencana alam. Hasil yang didapatkan adalah pemilihan parameter yang dioptimasi menggunakan algoritma genetika menghasilkan cluster dengan koefisien CDBw terbesar pada perbandingan evaluasi, akan tetapi perlu waktu yang lama untuk merunning sehingga metode tersebut diuji coba dengan data dengan jumlah observasi sedikit. Hasil dari implementasi metode terhadap data bencana alam menunjukkan terdapat 22 cluster","PeriodicalId":292117,"journal":{"name":"Jurnal Komputasi","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"https://jurnal.fmipa.unila.ac.id/komputasi/issue/view/146/showToc\",\"authors\":\"Aisyah Nur Fahira, Rani Nooraeni\",\"doi\":\"10.23960/komputasi.v11i1.3175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spatio Temporal DBSCAN (ST-DBSCAN) adalah metode yang dapat diterapkan pada data spasial yang diikuti dengan atribut temporal. Hasil dari ST-DBSCAN tergantung pada penentuan awal tiga parameter. Inisial parameter yang tidak optimal menyebabkan hasil pengelompokan dengan ST-DBSCAN tidak mencapai solusi yang global optimum. Penelitian ini bertujuan untuk mengoptimalkan penentuan parameter awal pada ST-DBSCAN menggunakan metode k Nearest neighborhood dan Algoritma Genetika yang diuji menggunakan data simulasi kemudian diterapkan dalam pengelompokan wilayah bencana alam. Hasil yang didapatkan adalah pemilihan parameter yang dioptimasi menggunakan algoritma genetika menghasilkan cluster dengan koefisien CDBw terbesar pada perbandingan evaluasi, akan tetapi perlu waktu yang lama untuk merunning sehingga metode tersebut diuji coba dengan data dengan jumlah observasi sedikit. Hasil dari implementasi metode terhadap data bencana alam menunjukkan terdapat 22 cluster\",\"PeriodicalId\":292117,\"journal\":{\"name\":\"Jurnal Komputasi\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Komputasi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23960/komputasi.v11i1.3175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Komputasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23960/komputasi.v11i1.3175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

ST-DBSCAN是一种应用于空间数据的方法,后面跟着时间属性。st - db扫描的结果取决于三个参数的初始确定。不最佳的初始参数导致ST-DBSCAN集群的结果无法达到全球最佳解决方案。本研究旨在优化ST-DBSCAN上的初始参数,使用最Nearest方法邻居k测试,并使用模拟数据测试,然后应用于自然灾害区域分组。它的结果是使用基因算法选择优化参数会产生在评估比较中最有效的CDBw系数的集群,但这需要很长时间的排序,以便用最少的观察数据进行测试。自然灾害数据数据实现的结果显示有22个集群
本文章由计算机程序翻译,如有差异,请以英文原文为准。
https://jurnal.fmipa.unila.ac.id/komputasi/issue/view/146/showToc
Spatio Temporal DBSCAN (ST-DBSCAN) adalah metode yang dapat diterapkan pada data spasial yang diikuti dengan atribut temporal. Hasil dari ST-DBSCAN tergantung pada penentuan awal tiga parameter. Inisial parameter yang tidak optimal menyebabkan hasil pengelompokan dengan ST-DBSCAN tidak mencapai solusi yang global optimum. Penelitian ini bertujuan untuk mengoptimalkan penentuan parameter awal pada ST-DBSCAN menggunakan metode k Nearest neighborhood dan Algoritma Genetika yang diuji menggunakan data simulasi kemudian diterapkan dalam pengelompokan wilayah bencana alam. Hasil yang didapatkan adalah pemilihan parameter yang dioptimasi menggunakan algoritma genetika menghasilkan cluster dengan koefisien CDBw terbesar pada perbandingan evaluasi, akan tetapi perlu waktu yang lama untuk merunning sehingga metode tersebut diuji coba dengan data dengan jumlah observasi sedikit. Hasil dari implementasi metode terhadap data bencana alam menunjukkan terdapat 22 cluster
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信