{"title":"蛇形SLAM:基于解耦非线性优化的高效全局视觉惯性SLAM","authors":"Darius Rückert, M. Stamminger","doi":"10.1109/ICUAS51884.2021.9476760","DOIUrl":null,"url":null,"abstract":"Snake-SLAM is a scalable visual inertial SLAM system for autonomous navigation in low-power aerial devices. The tracking front-end features map reuse, loop closing, relocalization, and supports monocular, stereo, and RGBD input. The keyframes are reduced by a graph-based simplification approach and further refined using a novel deferred mapping stage to ensure a sparse yet accurate global map. The optimization back-end decouples IMU state estimation from visual bundle adjustment and solves them separately in two simplified sub problems. This greatly reduces computational complexity and allows Snake-SLAM to use a larger local window size than existing SLAM methods. Our system implements a novel multistage VI initialization scheme, which uses gyroscope data to detect visual outliers and recovers metric velocity, gravity, and scale. We evaluate Snake-SLAM on the EuRoC dataset and show that it outperforms all other approaches in efficiency while also achieving state-of-the-art tracking accuracy.","PeriodicalId":423195,"journal":{"name":"2021 International Conference on Unmanned Aircraft Systems (ICUAS)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Snake-SLAM: Efficient Global Visual Inertial SLAM using Decoupled Nonlinear Optimization\",\"authors\":\"Darius Rückert, M. Stamminger\",\"doi\":\"10.1109/ICUAS51884.2021.9476760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Snake-SLAM is a scalable visual inertial SLAM system for autonomous navigation in low-power aerial devices. The tracking front-end features map reuse, loop closing, relocalization, and supports monocular, stereo, and RGBD input. The keyframes are reduced by a graph-based simplification approach and further refined using a novel deferred mapping stage to ensure a sparse yet accurate global map. The optimization back-end decouples IMU state estimation from visual bundle adjustment and solves them separately in two simplified sub problems. This greatly reduces computational complexity and allows Snake-SLAM to use a larger local window size than existing SLAM methods. Our system implements a novel multistage VI initialization scheme, which uses gyroscope data to detect visual outliers and recovers metric velocity, gravity, and scale. We evaluate Snake-SLAM on the EuRoC dataset and show that it outperforms all other approaches in efficiency while also achieving state-of-the-art tracking accuracy.\",\"PeriodicalId\":423195,\"journal\":{\"name\":\"2021 International Conference on Unmanned Aircraft Systems (ICUAS)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Unmanned Aircraft Systems (ICUAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICUAS51884.2021.9476760\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Unmanned Aircraft Systems (ICUAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUAS51884.2021.9476760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Snake-SLAM: Efficient Global Visual Inertial SLAM using Decoupled Nonlinear Optimization
Snake-SLAM is a scalable visual inertial SLAM system for autonomous navigation in low-power aerial devices. The tracking front-end features map reuse, loop closing, relocalization, and supports monocular, stereo, and RGBD input. The keyframes are reduced by a graph-based simplification approach and further refined using a novel deferred mapping stage to ensure a sparse yet accurate global map. The optimization back-end decouples IMU state estimation from visual bundle adjustment and solves them separately in two simplified sub problems. This greatly reduces computational complexity and allows Snake-SLAM to use a larger local window size than existing SLAM methods. Our system implements a novel multistage VI initialization scheme, which uses gyroscope data to detect visual outliers and recovers metric velocity, gravity, and scale. We evaluate Snake-SLAM on the EuRoC dataset and show that it outperforms all other approaches in efficiency while also achieving state-of-the-art tracking accuracy.