一种基于全向图像的直接人脸检测方法

Y. Dupuis, X. Savatier, J. Ertaud, P. Vasseur
{"title":"一种基于全向图像的直接人脸检测方法","authors":"Y. Dupuis, X. Savatier, J. Ertaud, P. Vasseur","doi":"10.1109/ROSE.2011.6058532","DOIUrl":null,"url":null,"abstract":"Catadioptric sensors offer abilities unexploited so far. This is especially true for face detection, and more generally, object detection. This paper presents our results of a direct approach to tackle face detection on catadioptric images. Despite no geometrical transformations, we are able to successfully apply our detector on distorted images. We expose a new method to synthesize large omnidirectional images database. Inspired from regular face detection training schemes, our method makes use of newly introduced polygonal Haar-like features. First tests demonstrated that our approach gives good performance and at the same time speeds up the detection process.","PeriodicalId":361472,"journal":{"name":"2011 IEEE International Symposium on Robotic and Sensors Environments (ROSE)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"A direct approach for face detection on omnidirectional images\",\"authors\":\"Y. Dupuis, X. Savatier, J. Ertaud, P. Vasseur\",\"doi\":\"10.1109/ROSE.2011.6058532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Catadioptric sensors offer abilities unexploited so far. This is especially true for face detection, and more generally, object detection. This paper presents our results of a direct approach to tackle face detection on catadioptric images. Despite no geometrical transformations, we are able to successfully apply our detector on distorted images. We expose a new method to synthesize large omnidirectional images database. Inspired from regular face detection training schemes, our method makes use of newly introduced polygonal Haar-like features. First tests demonstrated that our approach gives good performance and at the same time speeds up the detection process.\",\"PeriodicalId\":361472,\"journal\":{\"name\":\"2011 IEEE International Symposium on Robotic and Sensors Environments (ROSE)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Symposium on Robotic and Sensors Environments (ROSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROSE.2011.6058532\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Robotic and Sensors Environments (ROSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROSE.2011.6058532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

反射光传感器提供了迄今为止尚未开发的功能。对于人脸检测尤其如此,更一般地说,对于物体检测更是如此。本文介绍了一种直接解决反射图像人脸检测问题的方法。尽管没有几何变换,但我们能够成功地将我们的检测器应用于扭曲的图像。提出了一种合成大型全向图像数据库的新方法。受常规人脸检测训练方案的启发,我们的方法利用了新引入的多边形haar样特征。初步测试表明,我们的方法具有良好的性能,同时加快了检测过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A direct approach for face detection on omnidirectional images
Catadioptric sensors offer abilities unexploited so far. This is especially true for face detection, and more generally, object detection. This paper presents our results of a direct approach to tackle face detection on catadioptric images. Despite no geometrical transformations, we are able to successfully apply our detector on distorted images. We expose a new method to synthesize large omnidirectional images database. Inspired from regular face detection training schemes, our method makes use of newly introduced polygonal Haar-like features. First tests demonstrated that our approach gives good performance and at the same time speeds up the detection process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信