使用单目相机的惯性辅助状态和斜率估计

Ping Li, M. Garratt, A. Lambert
{"title":"使用单目相机的惯性辅助状态和斜率估计","authors":"Ping Li, M. Garratt, A. Lambert","doi":"10.1109/ROBIO.2015.7419703","DOIUrl":null,"url":null,"abstract":"This paper aims at estimating the metric state of a quadrotor using a monocular camera and an Inertial Measurement Unit (IMU) based on a homography model. Angular velocities are obtained from the on-board IMU and subtracted from the homography matrix. The reshaped vector from the homography matrix is directly fused with acceleration measurements using an Extended Kalman Filter. The visual inertial fusion framework is capable of estimating distance to the plane, speed, acceleration biases and surface normal. The feasibility of our method is proven using simulation and on real sensory data recorded from our quadrotor platform. It is shown that our approach is superior over traditional method that decomposes the homography matrix for the estimation of surface normal.","PeriodicalId":325536,"journal":{"name":"2015 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Inertial-aided state and slope estimation using a monocular camera\",\"authors\":\"Ping Li, M. Garratt, A. Lambert\",\"doi\":\"10.1109/ROBIO.2015.7419703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims at estimating the metric state of a quadrotor using a monocular camera and an Inertial Measurement Unit (IMU) based on a homography model. Angular velocities are obtained from the on-board IMU and subtracted from the homography matrix. The reshaped vector from the homography matrix is directly fused with acceleration measurements using an Extended Kalman Filter. The visual inertial fusion framework is capable of estimating distance to the plane, speed, acceleration biases and surface normal. The feasibility of our method is proven using simulation and on real sensory data recorded from our quadrotor platform. It is shown that our approach is superior over traditional method that decomposes the homography matrix for the estimation of surface normal.\",\"PeriodicalId\":325536,\"journal\":{\"name\":\"2015 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBIO.2015.7419703\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO.2015.7419703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

利用单目相机和惯性测量单元(IMU),基于单应性模型对四旋翼飞行器的度量状态进行了估计。角速度由机载IMU获得,并从单应矩阵中减去。利用扩展卡尔曼滤波直接将来自单应矩阵的重构向量与加速度测量融合。视觉惯性融合框架能够估计到平面的距离、速度、加速度偏差和表面法线。我们的方法的可行性证明了使用仿真和真实的传感数据记录从我们的四旋翼平台。结果表明,该方法优于传统的分解单应矩阵法向估计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inertial-aided state and slope estimation using a monocular camera
This paper aims at estimating the metric state of a quadrotor using a monocular camera and an Inertial Measurement Unit (IMU) based on a homography model. Angular velocities are obtained from the on-board IMU and subtracted from the homography matrix. The reshaped vector from the homography matrix is directly fused with acceleration measurements using an Extended Kalman Filter. The visual inertial fusion framework is capable of estimating distance to the plane, speed, acceleration biases and surface normal. The feasibility of our method is proven using simulation and on real sensory data recorded from our quadrotor platform. It is shown that our approach is superior over traditional method that decomposes the homography matrix for the estimation of surface normal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信