L. Peters, J. Schellekens, F. Clermonts, J. Duarte
{"title":"离线平衡正向反激变换器","authors":"L. Peters, J. Schellekens, F. Clermonts, J. Duarte","doi":"10.1109/SPEC.2016.7846004","DOIUrl":null,"url":null,"abstract":"Due to the flybacks' indirect characteristic of energy transfer, the transformer size increases for high power levels. Providing an additional direct energy transfer path can decrease its size. Parallel forward-flyback converters offer such functionality and outperform forward converters with regard to PFC functionality. A balanced forward-flyback converter is a variation on this kind of parallel converter. The forward and flyback sub-converters share a transformer winding and an additional balancing capacitor enables even better AC line voltage utilization. This paper starts with an in-depth analysis of the balanced forward-flyback converter, and introduces ten operating modes in which this converter can operate. A boundary-conduction mode (BCM) controller for the magnetization current is developed and presented, and through simulations the PFC performance of the converter is tested with a constant switch on-time controller. Moreover, a prototype is designed and built with both a dissipative R-C-D snubber and two-switch clamp configuration. Experimental results from the 100W/120–373V AC/DC prototype were obtained to prove the converter operation and BCM controller concept. The balanced forward-flyback converter in BCM offers good PFC performance and manages a THD of input current between 1.69% and 4.38%.","PeriodicalId":403316,"journal":{"name":"2016 IEEE 2nd Annual Southern Power Electronics Conference (SPEC)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Off-line balanced forward-flyback converter\",\"authors\":\"L. Peters, J. Schellekens, F. Clermonts, J. Duarte\",\"doi\":\"10.1109/SPEC.2016.7846004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the flybacks' indirect characteristic of energy transfer, the transformer size increases for high power levels. Providing an additional direct energy transfer path can decrease its size. Parallel forward-flyback converters offer such functionality and outperform forward converters with regard to PFC functionality. A balanced forward-flyback converter is a variation on this kind of parallel converter. The forward and flyback sub-converters share a transformer winding and an additional balancing capacitor enables even better AC line voltage utilization. This paper starts with an in-depth analysis of the balanced forward-flyback converter, and introduces ten operating modes in which this converter can operate. A boundary-conduction mode (BCM) controller for the magnetization current is developed and presented, and through simulations the PFC performance of the converter is tested with a constant switch on-time controller. Moreover, a prototype is designed and built with both a dissipative R-C-D snubber and two-switch clamp configuration. Experimental results from the 100W/120–373V AC/DC prototype were obtained to prove the converter operation and BCM controller concept. The balanced forward-flyback converter in BCM offers good PFC performance and manages a THD of input current between 1.69% and 4.38%.\",\"PeriodicalId\":403316,\"journal\":{\"name\":\"2016 IEEE 2nd Annual Southern Power Electronics Conference (SPEC)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 2nd Annual Southern Power Electronics Conference (SPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPEC.2016.7846004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 2nd Annual Southern Power Electronics Conference (SPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPEC.2016.7846004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Due to the flybacks' indirect characteristic of energy transfer, the transformer size increases for high power levels. Providing an additional direct energy transfer path can decrease its size. Parallel forward-flyback converters offer such functionality and outperform forward converters with regard to PFC functionality. A balanced forward-flyback converter is a variation on this kind of parallel converter. The forward and flyback sub-converters share a transformer winding and an additional balancing capacitor enables even better AC line voltage utilization. This paper starts with an in-depth analysis of the balanced forward-flyback converter, and introduces ten operating modes in which this converter can operate. A boundary-conduction mode (BCM) controller for the magnetization current is developed and presented, and through simulations the PFC performance of the converter is tested with a constant switch on-time controller. Moreover, a prototype is designed and built with both a dissipative R-C-D snubber and two-switch clamp configuration. Experimental results from the 100W/120–373V AC/DC prototype were obtained to prove the converter operation and BCM controller concept. The balanced forward-flyback converter in BCM offers good PFC performance and manages a THD of input current between 1.69% and 4.38%.