学习者风格的智能检测器

Hibbi Fatima-Zohra, Abdoun Otman, Haimoudi El Khatir
{"title":"学习者风格的智能检测器","authors":"Hibbi Fatima-Zohra, Abdoun Otman, Haimoudi El Khatir","doi":"10.1109/ICOA.2019.8727671","DOIUrl":null,"url":null,"abstract":"The detection of learner style allows us to know their style preferred. As a result, we can augment the efficiency of their learning. In this paper, we propose to provide a single solution (the appropriate style) more suited to the learner by looking for the path to generate from the initial state of the profile (Resource Data) to the desired objective. In this contribution, we have transformed the search of adopted learner style into an optimization problem. By applying unsupervised learning method, we are looking to optimize the list of tools/exercises of a training course using genetic algorithms","PeriodicalId":109940,"journal":{"name":"2019 5th International Conference on Optimization and Applications (ICOA)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Smart Detector of Learner Style\",\"authors\":\"Hibbi Fatima-Zohra, Abdoun Otman, Haimoudi El Khatir\",\"doi\":\"10.1109/ICOA.2019.8727671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The detection of learner style allows us to know their style preferred. As a result, we can augment the efficiency of their learning. In this paper, we propose to provide a single solution (the appropriate style) more suited to the learner by looking for the path to generate from the initial state of the profile (Resource Data) to the desired objective. In this contribution, we have transformed the search of adopted learner style into an optimization problem. By applying unsupervised learning method, we are looking to optimize the list of tools/exercises of a training course using genetic algorithms\",\"PeriodicalId\":109940,\"journal\":{\"name\":\"2019 5th International Conference on Optimization and Applications (ICOA)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 5th International Conference on Optimization and Applications (ICOA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOA.2019.8727671\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 5th International Conference on Optimization and Applications (ICOA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOA.2019.8727671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

通过对学习者风格的检测,我们可以了解他们所偏好的风格。因此,我们可以提高他们的学习效率。在本文中,我们建议通过寻找从轮廓(资源数据)的初始状态生成所需目标的路径来提供更适合学习者的单一解决方案(适当的风格)。在这篇文章中,我们将对所采用的学习者风格的搜索转化为一个优化问题。通过应用无监督学习方法,我们希望使用遗传算法优化训练课程的工具/练习列表
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Smart Detector of Learner Style
The detection of learner style allows us to know their style preferred. As a result, we can augment the efficiency of their learning. In this paper, we propose to provide a single solution (the appropriate style) more suited to the learner by looking for the path to generate from the initial state of the profile (Resource Data) to the desired objective. In this contribution, we have transformed the search of adopted learner style into an optimization problem. By applying unsupervised learning method, we are looking to optimize the list of tools/exercises of a training course using genetic algorithms
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信