{"title":"自动化管道设计","authors":"D. Kroening, W. Paul","doi":"10.1145/378239.379071","DOIUrl":null,"url":null,"abstract":"The interlock and forwarding logic is considered the tricky part of a fully-featured pipelined microprocessor. Debugging these parts delays the hardware design process considerably. It is therefore desirable to automate the design of both interlock and forwarding logic. The hardware design engineer begins with a sequential implementation without any interlock and forwarding logic. A tool then adds the forwarding and interlock logic required for pipelining. This paper describes the algorithm for such a tool and the correctness is formally verified. We use a standard DLX RISC processor as an example.","PeriodicalId":154316,"journal":{"name":"Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232)","volume":"221 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":"{\"title\":\"Automated pipeline design\",\"authors\":\"D. Kroening, W. Paul\",\"doi\":\"10.1145/378239.379071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The interlock and forwarding logic is considered the tricky part of a fully-featured pipelined microprocessor. Debugging these parts delays the hardware design process considerably. It is therefore desirable to automate the design of both interlock and forwarding logic. The hardware design engineer begins with a sequential implementation without any interlock and forwarding logic. A tool then adds the forwarding and interlock logic required for pipelining. This paper describes the algorithm for such a tool and the correctness is formally verified. We use a standard DLX RISC processor as an example.\",\"PeriodicalId\":154316,\"journal\":{\"name\":\"Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232)\",\"volume\":\"221 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/378239.379071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/378239.379071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The interlock and forwarding logic is considered the tricky part of a fully-featured pipelined microprocessor. Debugging these parts delays the hardware design process considerably. It is therefore desirable to automate the design of both interlock and forwarding logic. The hardware design engineer begins with a sequential implementation without any interlock and forwarding logic. A tool then adds the forwarding and interlock logic required for pipelining. This paper describes the algorithm for such a tool and the correctness is formally verified. We use a standard DLX RISC processor as an example.