实时基于立体的生物启发的3D运动分类细胞

Mahmoud Shafik, B. Mertsching
{"title":"实时基于立体的生物启发的3D运动分类细胞","authors":"Mahmoud Shafik, B. Mertsching","doi":"10.1109/ICIEA.2011.5975556","DOIUrl":null,"url":null,"abstract":"In this paper, we present a real time biologically motivated 3D motion classifier cells integrating the depth information generated from a stereo input implemented in an active vision system. The proposed approach is accurately able to detect and estimate multiple interfered 3D complex motions under the absence of predefined spatial coherence. Moreover, the system has ability to examine the response of input 3D motion vector fields to a certain 3D motion patterns (3D motion classifier cells) such as motion in the Z direction representing movements towards the system, which is very important to overcome typical problem in autonomous mobile robotic vision such as collision detection and inhibition of the ego-motion defects of a moving camera head. The output of the algorithm is part in a multi-object segmentation approach implemented in an active vision system.","PeriodicalId":304500,"journal":{"name":"2011 6th IEEE Conference on Industrial Electronics and Applications","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real time stereo-based biologically inspired 3D motion classifier cells\",\"authors\":\"Mahmoud Shafik, B. Mertsching\",\"doi\":\"10.1109/ICIEA.2011.5975556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a real time biologically motivated 3D motion classifier cells integrating the depth information generated from a stereo input implemented in an active vision system. The proposed approach is accurately able to detect and estimate multiple interfered 3D complex motions under the absence of predefined spatial coherence. Moreover, the system has ability to examine the response of input 3D motion vector fields to a certain 3D motion patterns (3D motion classifier cells) such as motion in the Z direction representing movements towards the system, which is very important to overcome typical problem in autonomous mobile robotic vision such as collision detection and inhibition of the ego-motion defects of a moving camera head. The output of the algorithm is part in a multi-object segmentation approach implemented in an active vision system.\",\"PeriodicalId\":304500,\"journal\":{\"name\":\"2011 6th IEEE Conference on Industrial Electronics and Applications\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 6th IEEE Conference on Industrial Electronics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIEA.2011.5975556\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 6th IEEE Conference on Industrial Electronics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEA.2011.5975556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一个实时生物驱动的3D运动分类器单元,该单元整合了主动视觉系统中立体输入产生的深度信息。该方法能够准确地检测和估计在没有预定义空间相干性的情况下的多个干扰三维复杂运动。此外,该系统还能够检测输入的3D运动矢量场对特定3D运动模式(3D运动分类单元)的响应,例如代表向系统运动的Z方向运动,这对于克服自主移动机器人视觉中的典型问题非常重要,例如碰撞检测和抑制移动摄像机头的自我运动缺陷。该算法的输出是在主动视觉系统中实现的多目标分割方法的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real time stereo-based biologically inspired 3D motion classifier cells
In this paper, we present a real time biologically motivated 3D motion classifier cells integrating the depth information generated from a stereo input implemented in an active vision system. The proposed approach is accurately able to detect and estimate multiple interfered 3D complex motions under the absence of predefined spatial coherence. Moreover, the system has ability to examine the response of input 3D motion vector fields to a certain 3D motion patterns (3D motion classifier cells) such as motion in the Z direction representing movements towards the system, which is very important to overcome typical problem in autonomous mobile robotic vision such as collision detection and inhibition of the ego-motion defects of a moving camera head. The output of the algorithm is part in a multi-object segmentation approach implemented in an active vision system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信