{"title":"关于四维紧致Ricci孤子的欧拉特性和Hitchin-Thorpe不等式","authors":"Xu Cheng, E. Ribeiro, Detang Zhou","doi":"10.1090/bproc/155","DOIUrl":null,"url":null,"abstract":"In this article, we investigate the geometry of \n\n \n 4\n 4\n \n\n-dimensional compact gradient Ricci solitons. We prove that, under an upper bound condition on the range of the potential function, a \n\n \n 4\n 4\n \n\n-dimensional compact gradient Ricci soliton must satisfy the classical Hitchin-Thorpe inequality. In addition, some volume estimates are also obtained.","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On Euler characteristic and Hitchin-Thorpe inequality for four-dimensional compact Ricci solitons\",\"authors\":\"Xu Cheng, E. Ribeiro, Detang Zhou\",\"doi\":\"10.1090/bproc/155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we investigate the geometry of \\n\\n \\n 4\\n 4\\n \\n\\n-dimensional compact gradient Ricci solitons. We prove that, under an upper bound condition on the range of the potential function, a \\n\\n \\n 4\\n 4\\n \\n\\n-dimensional compact gradient Ricci soliton must satisfy the classical Hitchin-Thorpe inequality. In addition, some volume estimates are also obtained.\",\"PeriodicalId\":106316,\"journal\":{\"name\":\"Proceedings of the American Mathematical Society, Series B\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the American Mathematical Society, Series B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/bproc/155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bproc/155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On Euler characteristic and Hitchin-Thorpe inequality for four-dimensional compact Ricci solitons
In this article, we investigate the geometry of
4
4
-dimensional compact gradient Ricci solitons. We prove that, under an upper bound condition on the range of the potential function, a
4
4
-dimensional compact gradient Ricci soliton must satisfy the classical Hitchin-Thorpe inequality. In addition, some volume estimates are also obtained.