自主水下航行器可靠运行的学习不确定性模型

Geoffrey A. Hollinger, A. Pereira, G. Sukhatme
{"title":"自主水下航行器可靠运行的学习不确定性模型","authors":"Geoffrey A. Hollinger, A. Pereira, G. Sukhatme","doi":"10.1109/ICRA.2013.6631380","DOIUrl":null,"url":null,"abstract":"We discuss the problem of learning uncertainty models of ocean processes to assist in the operation of Autonomous Underwater Vehicles (AUVs) in the ocean. We focus on the prediction of ocean currents, which have significant effect on the navigation of AUVs. Available models provide accurate prediction of ocean currents, but they typically do not provide confidence estimates of these predictions. We propose augmenting existing prediction methods with variance measures based on Gaussian Process (GP) regression. We show that commonly used measures of variance in GPs do not accurately reflect errors in ocean current prediction, and we propose an alternative uncertainty measure based on interpolation variance. We integrate these measures of uncertainty into a probabilistic planner running on an AUV during a field deployment in the Southern California Bight. Our experiments demonstrate that the proposed uncertainty measures improve the safety and reliability of AUVs operating in the coastal ocean.","PeriodicalId":259746,"journal":{"name":"2013 IEEE International Conference on Robotics and Automation","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Learning uncertainty models for reliable operation of Autonomous Underwater Vehicles\",\"authors\":\"Geoffrey A. Hollinger, A. Pereira, G. Sukhatme\",\"doi\":\"10.1109/ICRA.2013.6631380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss the problem of learning uncertainty models of ocean processes to assist in the operation of Autonomous Underwater Vehicles (AUVs) in the ocean. We focus on the prediction of ocean currents, which have significant effect on the navigation of AUVs. Available models provide accurate prediction of ocean currents, but they typically do not provide confidence estimates of these predictions. We propose augmenting existing prediction methods with variance measures based on Gaussian Process (GP) regression. We show that commonly used measures of variance in GPs do not accurately reflect errors in ocean current prediction, and we propose an alternative uncertainty measure based on interpolation variance. We integrate these measures of uncertainty into a probabilistic planner running on an AUV during a field deployment in the Southern California Bight. Our experiments demonstrate that the proposed uncertainty measures improve the safety and reliability of AUVs operating in the coastal ocean.\",\"PeriodicalId\":259746,\"journal\":{\"name\":\"2013 IEEE International Conference on Robotics and Automation\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Robotics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA.2013.6631380\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA.2013.6631380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

本文讨论了海洋过程不确定性模型的学习问题,以帮助自主水下航行器(auv)在海洋中运行。洋流的预测对水下机器人的导航有重要的影响。现有的模型提供了准确的洋流预测,但它们通常不能提供这些预测的置信度估计。提出了基于高斯过程(GP)回归的方差测度对现有预测方法的扩充。我们发现GPs中常用的方差度量不能准确地反映海流预测的误差,并提出了一种基于插值方差的替代不确定性度量。在南加州海湾的现场部署中,我们将这些不确定性措施整合到AUV上运行的概率规划程序中。实验表明,所提出的不确定性措施提高了auv在近海作业的安全性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning uncertainty models for reliable operation of Autonomous Underwater Vehicles
We discuss the problem of learning uncertainty models of ocean processes to assist in the operation of Autonomous Underwater Vehicles (AUVs) in the ocean. We focus on the prediction of ocean currents, which have significant effect on the navigation of AUVs. Available models provide accurate prediction of ocean currents, but they typically do not provide confidence estimates of these predictions. We propose augmenting existing prediction methods with variance measures based on Gaussian Process (GP) regression. We show that commonly used measures of variance in GPs do not accurately reflect errors in ocean current prediction, and we propose an alternative uncertainty measure based on interpolation variance. We integrate these measures of uncertainty into a probabilistic planner running on an AUV during a field deployment in the Southern California Bight. Our experiments demonstrate that the proposed uncertainty measures improve the safety and reliability of AUVs operating in the coastal ocean.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信