矩阵处理器使用p-ADIC算法进行精确的线性计算

E. V. Krishnamurtht
{"title":"矩阵处理器使用p-ADIC算法进行精确的线性计算","authors":"E. V. Krishnamurtht","doi":"10.1109/ARITH.1975.6156994","DOIUrl":null,"url":null,"abstract":"A unique code (called Hensel's code) is derived for a rational number, by truncating its infinite padic expansion. The four basic arithmetic algorithms for these codes are described and their application to rational matrix computations is demonstrated by solving a system of linear equations exactly, using the Gaussian elimination procedure. A comparative study of the computational complexity involved in this arithmetic and the multiple prime module arithmetic is made with reference to matrix computations. On this basis, a multiple padic scheme is suggested for the design of a highly parallel matrix processor.","PeriodicalId":360742,"journal":{"name":"1975 IEEE 3rd Symposium on Computer Arithmetic (ARITH)","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1975-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Matrix processors using p-ADIC arithmetic for exact linear computations\",\"authors\":\"E. V. Krishnamurtht\",\"doi\":\"10.1109/ARITH.1975.6156994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A unique code (called Hensel's code) is derived for a rational number, by truncating its infinite padic expansion. The four basic arithmetic algorithms for these codes are described and their application to rational matrix computations is demonstrated by solving a system of linear equations exactly, using the Gaussian elimination procedure. A comparative study of the computational complexity involved in this arithmetic and the multiple prime module arithmetic is made with reference to matrix computations. On this basis, a multiple padic scheme is suggested for the design of a highly parallel matrix processor.\",\"PeriodicalId\":360742,\"journal\":{\"name\":\"1975 IEEE 3rd Symposium on Computer Arithmetic (ARITH)\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1975-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1975 IEEE 3rd Symposium on Computer Arithmetic (ARITH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARITH.1975.6156994\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1975 IEEE 3rd Symposium on Computer Arithmetic (ARITH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.1975.6156994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

通过截断有理数的无限展开式,推导出有理数的唯一码(称为亨塞尔码)。描述了这些代码的四种基本算法,并通过使用高斯消元法精确地求解一个线性方程组,证明了它们在有理矩阵计算中的应用。以矩阵计算为例,对该算法与多素数模算法的计算复杂度进行了比较研究。在此基础上,提出了一种多并行矩阵处理器的设计方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Matrix processors using p-ADIC arithmetic for exact linear computations
A unique code (called Hensel's code) is derived for a rational number, by truncating its infinite padic expansion. The four basic arithmetic algorithms for these codes are described and their application to rational matrix computations is demonstrated by solving a system of linear equations exactly, using the Gaussian elimination procedure. A comparative study of the computational complexity involved in this arithmetic and the multiple prime module arithmetic is made with reference to matrix computations. On this basis, a multiple padic scheme is suggested for the design of a highly parallel matrix processor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信