利用剪切水平模式板波在LiNbO3板中的固体安装谐振器

M. Kadota, Shuji Tanaka
{"title":"利用剪切水平模式板波在LiNbO3板中的固体安装谐振器","authors":"M. Kadota, Shuji Tanaka","doi":"10.1109/FCS.2016.7546795","DOIUrl":null,"url":null,"abstract":"A 0-th shear horizontal (SHo) mode plate wave has an electromechanical coupling factor k2 larger than 50% in a (0°, 120°, 0°) LiNbOs (LN) plate thinner than 0.1λ (λ is a pitch of interdigital transducer). However, the structure is fragile, because the plate thickness is as thin as 0.5~0.6 μm for devices working in several hundred MHz range. To address this issue, a solidly mounted resonator (SMR) structure was applied to SH mode plate resonators. The materials and layer thicknesses of a Bragg reflector, the Euler angle and thickness of a LN plate, and the thickness and material of electrodes were investigated to obtain large k2 and spurious-free response by finite element method (FEM) simulation. The designed Bragg reflector is composed of 6 layers of SiO2 and AlN. The best Euler angle is (0°, 90°, 0°) and the suitable thickness of a LN plate is 0.3 to 1 λ. Also, heavy and thick electrodes are better for interdigital transducers (IDT). This design is significantly different from that of the cavity type. A SMR type plate wave resonator of several hundred MHz was fabricated using 2 μm thick LN, and a wide bandwidth of 20% was measured.","PeriodicalId":122928,"journal":{"name":"2016 IEEE International Frequency Control Symposium (IFCS)","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Solidly mounted resonator using shear horizontal mode plate wave in LiNbO3 plate\",\"authors\":\"M. Kadota, Shuji Tanaka\",\"doi\":\"10.1109/FCS.2016.7546795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A 0-th shear horizontal (SHo) mode plate wave has an electromechanical coupling factor k2 larger than 50% in a (0°, 120°, 0°) LiNbOs (LN) plate thinner than 0.1λ (λ is a pitch of interdigital transducer). However, the structure is fragile, because the plate thickness is as thin as 0.5~0.6 μm for devices working in several hundred MHz range. To address this issue, a solidly mounted resonator (SMR) structure was applied to SH mode plate resonators. The materials and layer thicknesses of a Bragg reflector, the Euler angle and thickness of a LN plate, and the thickness and material of electrodes were investigated to obtain large k2 and spurious-free response by finite element method (FEM) simulation. The designed Bragg reflector is composed of 6 layers of SiO2 and AlN. The best Euler angle is (0°, 90°, 0°) and the suitable thickness of a LN plate is 0.3 to 1 λ. Also, heavy and thick electrodes are better for interdigital transducers (IDT). This design is significantly different from that of the cavity type. A SMR type plate wave resonator of several hundred MHz was fabricated using 2 μm thick LN, and a wide bandwidth of 20% was measured.\",\"PeriodicalId\":122928,\"journal\":{\"name\":\"2016 IEEE International Frequency Control Symposium (IFCS)\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Frequency Control Symposium (IFCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FCS.2016.7546795\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Frequency Control Symposium (IFCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCS.2016.7546795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

在厚度小于0.1λ (λ为数字间换能器的间距)的(0°,120°,0°)LiNbOs (LN)板中,第0剪切水平(SHo)模式板波的机电耦合因子k2大于50%。然而,这种结构是脆弱的,因为在几百MHz范围内工作的器件的板厚度只有0.5~0.6 μm。为了解决这一问题,将固体安装谐振器(SMR)结构应用于SH模板谐振器。通过有限元模拟,研究了Bragg反射器的材料和层厚、LN板的欧拉角和厚度以及电极的厚度和材料,以获得大的k2和无杂散响应。设计的布拉格反射器由6层SiO2和AlN组成。最佳欧拉角为(0°,90°,0°),LN板的合适厚度为0.3 ~ 1 λ。此外,重电极和厚电极更适合用于数字间换能器(IDT)。这种设计与腔型设计有很大的不同。采用2 μm厚的LN制备了数百MHz的SMR型板波谐振器,测量了20%的带宽。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solidly mounted resonator using shear horizontal mode plate wave in LiNbO3 plate
A 0-th shear horizontal (SHo) mode plate wave has an electromechanical coupling factor k2 larger than 50% in a (0°, 120°, 0°) LiNbOs (LN) plate thinner than 0.1λ (λ is a pitch of interdigital transducer). However, the structure is fragile, because the plate thickness is as thin as 0.5~0.6 μm for devices working in several hundred MHz range. To address this issue, a solidly mounted resonator (SMR) structure was applied to SH mode plate resonators. The materials and layer thicknesses of a Bragg reflector, the Euler angle and thickness of a LN plate, and the thickness and material of electrodes were investigated to obtain large k2 and spurious-free response by finite element method (FEM) simulation. The designed Bragg reflector is composed of 6 layers of SiO2 and AlN. The best Euler angle is (0°, 90°, 0°) and the suitable thickness of a LN plate is 0.3 to 1 λ. Also, heavy and thick electrodes are better for interdigital transducers (IDT). This design is significantly different from that of the cavity type. A SMR type plate wave resonator of several hundred MHz was fabricated using 2 μm thick LN, and a wide bandwidth of 20% was measured.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信