{"title":"利用剪切水平模式板波在LiNbO3板中的固体安装谐振器","authors":"M. Kadota, Shuji Tanaka","doi":"10.1109/FCS.2016.7546795","DOIUrl":null,"url":null,"abstract":"A 0-th shear horizontal (SHo) mode plate wave has an electromechanical coupling factor k2 larger than 50% in a (0°, 120°, 0°) LiNbOs (LN) plate thinner than 0.1λ (λ is a pitch of interdigital transducer). However, the structure is fragile, because the plate thickness is as thin as 0.5~0.6 μm for devices working in several hundred MHz range. To address this issue, a solidly mounted resonator (SMR) structure was applied to SH mode plate resonators. The materials and layer thicknesses of a Bragg reflector, the Euler angle and thickness of a LN plate, and the thickness and material of electrodes were investigated to obtain large k2 and spurious-free response by finite element method (FEM) simulation. The designed Bragg reflector is composed of 6 layers of SiO2 and AlN. The best Euler angle is (0°, 90°, 0°) and the suitable thickness of a LN plate is 0.3 to 1 λ. Also, heavy and thick electrodes are better for interdigital transducers (IDT). This design is significantly different from that of the cavity type. A SMR type plate wave resonator of several hundred MHz was fabricated using 2 μm thick LN, and a wide bandwidth of 20% was measured.","PeriodicalId":122928,"journal":{"name":"2016 IEEE International Frequency Control Symposium (IFCS)","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Solidly mounted resonator using shear horizontal mode plate wave in LiNbO3 plate\",\"authors\":\"M. Kadota, Shuji Tanaka\",\"doi\":\"10.1109/FCS.2016.7546795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A 0-th shear horizontal (SHo) mode plate wave has an electromechanical coupling factor k2 larger than 50% in a (0°, 120°, 0°) LiNbOs (LN) plate thinner than 0.1λ (λ is a pitch of interdigital transducer). However, the structure is fragile, because the plate thickness is as thin as 0.5~0.6 μm for devices working in several hundred MHz range. To address this issue, a solidly mounted resonator (SMR) structure was applied to SH mode plate resonators. The materials and layer thicknesses of a Bragg reflector, the Euler angle and thickness of a LN plate, and the thickness and material of electrodes were investigated to obtain large k2 and spurious-free response by finite element method (FEM) simulation. The designed Bragg reflector is composed of 6 layers of SiO2 and AlN. The best Euler angle is (0°, 90°, 0°) and the suitable thickness of a LN plate is 0.3 to 1 λ. Also, heavy and thick electrodes are better for interdigital transducers (IDT). This design is significantly different from that of the cavity type. A SMR type plate wave resonator of several hundred MHz was fabricated using 2 μm thick LN, and a wide bandwidth of 20% was measured.\",\"PeriodicalId\":122928,\"journal\":{\"name\":\"2016 IEEE International Frequency Control Symposium (IFCS)\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Frequency Control Symposium (IFCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FCS.2016.7546795\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Frequency Control Symposium (IFCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCS.2016.7546795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Solidly mounted resonator using shear horizontal mode plate wave in LiNbO3 plate
A 0-th shear horizontal (SHo) mode plate wave has an electromechanical coupling factor k2 larger than 50% in a (0°, 120°, 0°) LiNbOs (LN) plate thinner than 0.1λ (λ is a pitch of interdigital transducer). However, the structure is fragile, because the plate thickness is as thin as 0.5~0.6 μm for devices working in several hundred MHz range. To address this issue, a solidly mounted resonator (SMR) structure was applied to SH mode plate resonators. The materials and layer thicknesses of a Bragg reflector, the Euler angle and thickness of a LN plate, and the thickness and material of electrodes were investigated to obtain large k2 and spurious-free response by finite element method (FEM) simulation. The designed Bragg reflector is composed of 6 layers of SiO2 and AlN. The best Euler angle is (0°, 90°, 0°) and the suitable thickness of a LN plate is 0.3 to 1 λ. Also, heavy and thick electrodes are better for interdigital transducers (IDT). This design is significantly different from that of the cavity type. A SMR type plate wave resonator of several hundred MHz was fabricated using 2 μm thick LN, and a wide bandwidth of 20% was measured.