使用混合稳定装置腰椎(L2-L4)的生物力学研究-有限元分析

Pushpdant Jain, Mohammed Rajik Khan
{"title":"使用混合稳定装置腰椎(L2-L4)的生物力学研究-有限元分析","authors":"Pushpdant Jain, Mohammed Rajik Khan","doi":"10.4018/ijmmme.2020010102","DOIUrl":null,"url":null,"abstract":"Spinal instrumentations have been designed to alleviate lower back pain and stabilize the spinal segments. The present work aims to evaluate the biomechanical effect of the proposed Hybrid Stabilization Device (HSD). Non-linear finite element model of lumbar segment L2-L4 were developed to compare the intact spine (IS) with rigid implant (RI) and hybrid stabilization device. To restrict all directional motion vertebra L4 bottom surface were kept fixed and axial compressive force of 500N with a moment of 10Nm were applied to the top surface of L2 vertebrae. The results of range of motion (ROM), intervertebral disc (IVD) pressure and strains for IVD-23 and IVD-34 were determined for flexion, extension, lateral bending and axial twist. Results demonstrated that ROM of HSD model is higher than RI and lower as compared to IS model. The predicted biomechanical parameters of the present work may be considered before clinical implementations of any implants.","PeriodicalId":375268,"journal":{"name":"Research Anthology on Emerging Technologies and Ethical Implications in Human Enhancement","volume":"174 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Biomechanical Study of Lumbar Spine (L2-L4) Using Hybrid Stabilization Device - A Finite Element Analysis\",\"authors\":\"Pushpdant Jain, Mohammed Rajik Khan\",\"doi\":\"10.4018/ijmmme.2020010102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spinal instrumentations have been designed to alleviate lower back pain and stabilize the spinal segments. The present work aims to evaluate the biomechanical effect of the proposed Hybrid Stabilization Device (HSD). Non-linear finite element model of lumbar segment L2-L4 were developed to compare the intact spine (IS) with rigid implant (RI) and hybrid stabilization device. To restrict all directional motion vertebra L4 bottom surface were kept fixed and axial compressive force of 500N with a moment of 10Nm were applied to the top surface of L2 vertebrae. The results of range of motion (ROM), intervertebral disc (IVD) pressure and strains for IVD-23 and IVD-34 were determined for flexion, extension, lateral bending and axial twist. Results demonstrated that ROM of HSD model is higher than RI and lower as compared to IS model. The predicted biomechanical parameters of the present work may be considered before clinical implementations of any implants.\",\"PeriodicalId\":375268,\"journal\":{\"name\":\"Research Anthology on Emerging Technologies and Ethical Implications in Human Enhancement\",\"volume\":\"174 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research Anthology on Emerging Technologies and Ethical Implications in Human Enhancement\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijmmme.2020010102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Anthology on Emerging Technologies and Ethical Implications in Human Enhancement","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijmmme.2020010102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

脊柱内固定被设计用来减轻腰痛和稳定脊柱节段。本研究旨在评估所提出的混合稳定装置(HSD)的生物力学效果。建立腰椎节段L2-L4的非线性有限元模型,比较完整脊柱(IS)与刚性植入物(RI)和混合稳定装置。为了限制所有方向运动,保持L4椎体底表面固定,并在L2椎体顶表面施加500N、10Nm力矩的轴向压缩力。测定IVD-23和IVD-34的屈曲、伸展、侧弯和轴向扭转时的活动范围(ROM)、椎间盘压力和应变(IVD)。结果表明,HSD模型的ROM高于RI,低于is模型。在临床实施任何植入物之前,本研究预测的生物力学参数可能会被考虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biomechanical Study of Lumbar Spine (L2-L4) Using Hybrid Stabilization Device - A Finite Element Analysis
Spinal instrumentations have been designed to alleviate lower back pain and stabilize the spinal segments. The present work aims to evaluate the biomechanical effect of the proposed Hybrid Stabilization Device (HSD). Non-linear finite element model of lumbar segment L2-L4 were developed to compare the intact spine (IS) with rigid implant (RI) and hybrid stabilization device. To restrict all directional motion vertebra L4 bottom surface were kept fixed and axial compressive force of 500N with a moment of 10Nm were applied to the top surface of L2 vertebrae. The results of range of motion (ROM), intervertebral disc (IVD) pressure and strains for IVD-23 and IVD-34 were determined for flexion, extension, lateral bending and axial twist. Results demonstrated that ROM of HSD model is higher than RI and lower as compared to IS model. The predicted biomechanical parameters of the present work may be considered before clinical implementations of any implants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信