基于紧密结合方法的低屈曲二维材料应变工程

M. Mahmoudi, Davoud Adineloo, M. Fathipour
{"title":"基于紧密结合方法的低屈曲二维材料应变工程","authors":"M. Mahmoudi, Davoud Adineloo, M. Fathipour","doi":"10.1109/IRANIANCEE.2015.7146388","DOIUrl":null,"url":null,"abstract":"In this paper, the effects of uniaxial strain on the electronic properties of low-buckled (LB) and planar two-dimensional (2D) materials, based on tight binding (TB) approach are theoretically investigated. For the first time, we present a new simple model for calculating strain tensor for a 2D material under uniaxial stress. Not only this new model can predict the strain for planar 2D structures such as armchair graphene nanoribbons (AGNRs) but also for LB 2D structures such as armchair silicene nanoribbons (ASiNRs). We modify nearest neighbor binding parameters to include the effect of hydrogen passivation of dangling bonds. Excellent agreement exists between results obtained based on density functional theory (DFT) and TB calculations.","PeriodicalId":187121,"journal":{"name":"2015 23rd Iranian Conference on Electrical Engineering","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strain engineering of low-buckled two-dimensional materials based on tight binding approach\",\"authors\":\"M. Mahmoudi, Davoud Adineloo, M. Fathipour\",\"doi\":\"10.1109/IRANIANCEE.2015.7146388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the effects of uniaxial strain on the electronic properties of low-buckled (LB) and planar two-dimensional (2D) materials, based on tight binding (TB) approach are theoretically investigated. For the first time, we present a new simple model for calculating strain tensor for a 2D material under uniaxial stress. Not only this new model can predict the strain for planar 2D structures such as armchair graphene nanoribbons (AGNRs) but also for LB 2D structures such as armchair silicene nanoribbons (ASiNRs). We modify nearest neighbor binding parameters to include the effect of hydrogen passivation of dangling bonds. Excellent agreement exists between results obtained based on density functional theory (DFT) and TB calculations.\",\"PeriodicalId\":187121,\"journal\":{\"name\":\"2015 23rd Iranian Conference on Electrical Engineering\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 23rd Iranian Conference on Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRANIANCEE.2015.7146388\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 23rd Iranian Conference on Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRANIANCEE.2015.7146388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文基于紧密结合(TB)方法,从理论上研究了单轴应变对低屈曲(LB)和平面二维(2D)材料电子性能的影响。本文首次提出了一种计算二维材料在单轴应力作用下应变张量的简单模型。该模型不仅可以预测平面二维结构如扶手椅式石墨烯纳米带(AGNRs)的应变,也可以预测平面二维结构如扶手椅式硅纳米带(ASiNRs)的应变。我们修改了最近邻键参数,以包括悬空键氢钝化的影响。基于密度泛函理论(DFT)得到的结果与TB计算结果非常吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strain engineering of low-buckled two-dimensional materials based on tight binding approach
In this paper, the effects of uniaxial strain on the electronic properties of low-buckled (LB) and planar two-dimensional (2D) materials, based on tight binding (TB) approach are theoretically investigated. For the first time, we present a new simple model for calculating strain tensor for a 2D material under uniaxial stress. Not only this new model can predict the strain for planar 2D structures such as armchair graphene nanoribbons (AGNRs) but also for LB 2D structures such as armchair silicene nanoribbons (ASiNRs). We modify nearest neighbor binding parameters to include the effect of hydrogen passivation of dangling bonds. Excellent agreement exists between results obtained based on density functional theory (DFT) and TB calculations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信