对学习分支定界积分策略的探讨

Mohamed Mustapha Kabbaj, A. E. Afia
{"title":"对学习分支定界积分策略的探讨","authors":"Mohamed Mustapha Kabbaj, A. E. Afia","doi":"10.1109/ICMCS.2016.7905626","DOIUrl":null,"url":null,"abstract":"Branch and bound is the preferred algorithm used for solving MILP problems. It involves two fundamental strategies that are node selection strategy and branching strategy. Whereas the learning literature has been focused in dealing with just one strategy on the same time, we design a two-in-one strategy of branch and bound algorithm regarding the fact that are intuitively dependent. To do so, we apply the well-known SVM algorithm to the well-known set of problems MIPLIP.","PeriodicalId":345854,"journal":{"name":"2016 5th International Conference on Multimedia Computing and Systems (ICMCS)","volume":"153 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Towards learning integral strategy of branch and bound\",\"authors\":\"Mohamed Mustapha Kabbaj, A. E. Afia\",\"doi\":\"10.1109/ICMCS.2016.7905626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Branch and bound is the preferred algorithm used for solving MILP problems. It involves two fundamental strategies that are node selection strategy and branching strategy. Whereas the learning literature has been focused in dealing with just one strategy on the same time, we design a two-in-one strategy of branch and bound algorithm regarding the fact that are intuitively dependent. To do so, we apply the well-known SVM algorithm to the well-known set of problems MIPLIP.\",\"PeriodicalId\":345854,\"journal\":{\"name\":\"2016 5th International Conference on Multimedia Computing and Systems (ICMCS)\",\"volume\":\"153 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 5th International Conference on Multimedia Computing and Systems (ICMCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMCS.2016.7905626\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 5th International Conference on Multimedia Computing and Systems (ICMCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMCS.2016.7905626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

分支定界算法是求解MILP问题的首选算法。它包括两个基本策略:节点选择策略和分支策略。鉴于学习文献一直专注于同时处理一种策略,我们设计了一种分支定界算法的二合一策略,考虑到这一事实是直观依赖的。为此,我们将众所周知的支持向量机算法应用于众所周知的MIPLIP问题集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards learning integral strategy of branch and bound
Branch and bound is the preferred algorithm used for solving MILP problems. It involves two fundamental strategies that are node selection strategy and branching strategy. Whereas the learning literature has been focused in dealing with just one strategy on the same time, we design a two-in-one strategy of branch and bound algorithm regarding the fact that are intuitively dependent. To do so, we apply the well-known SVM algorithm to the well-known set of problems MIPLIP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信