基于激光雷达的复杂办公环境下服务机器人地图学习方法

Youfang Lin, Siqiao Wu, Xiangpeng Bai
{"title":"基于激光雷达的复杂办公环境下服务机器人地图学习方法","authors":"Youfang Lin, Siqiao Wu, Xiangpeng Bai","doi":"10.1109/ICARCV.2016.7838858","DOIUrl":null,"url":null,"abstract":"This paper presents an efficient approach to simultaneous localization and mapping problems (SLAM) in complex office environment for a service robot without the capability of self-localization but equipped with a 2D laser radar. We propose a model of multi-layer bipartite graph of boundary segments extracted from successive data frames. To eliminate the cumulative errors caused by dead reckoning and radar itself, we introduce an error vector model defined between two successive layers and correct each data frame based on error vectors. The experimental results in a real office environment show that the approach we proposed can effectively reduce the cumulative errors during localization and mapping.","PeriodicalId":128828,"journal":{"name":"2016 14th International Conference on Control, Automation, Robotics and Vision (ICARCV)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An efficient approach of map-learning on service robot in complex office environment using laser radar\",\"authors\":\"Youfang Lin, Siqiao Wu, Xiangpeng Bai\",\"doi\":\"10.1109/ICARCV.2016.7838858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an efficient approach to simultaneous localization and mapping problems (SLAM) in complex office environment for a service robot without the capability of self-localization but equipped with a 2D laser radar. We propose a model of multi-layer bipartite graph of boundary segments extracted from successive data frames. To eliminate the cumulative errors caused by dead reckoning and radar itself, we introduce an error vector model defined between two successive layers and correct each data frame based on error vectors. The experimental results in a real office environment show that the approach we proposed can effectively reduce the cumulative errors during localization and mapping.\",\"PeriodicalId\":128828,\"journal\":{\"name\":\"2016 14th International Conference on Control, Automation, Robotics and Vision (ICARCV)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 14th International Conference on Control, Automation, Robotics and Vision (ICARCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICARCV.2016.7838858\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 14th International Conference on Control, Automation, Robotics and Vision (ICARCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARCV.2016.7838858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对不具备自定位能力但配备二维激光雷达的服务机器人,提出了一种解决复杂办公环境下同时定位与制图问题的有效方法。提出了一种从连续数据帧中提取边界段的多层二部图模型。为了消除航位推算和雷达本身造成的累积误差,我们引入了在两个连续层之间定义的误差向量模型,并基于误差向量对每个数据帧进行校正。在实际办公环境下的实验结果表明,所提出的方法可以有效地减少定位和映射过程中的累积误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An efficient approach of map-learning on service robot in complex office environment using laser radar
This paper presents an efficient approach to simultaneous localization and mapping problems (SLAM) in complex office environment for a service robot without the capability of self-localization but equipped with a 2D laser radar. We propose a model of multi-layer bipartite graph of boundary segments extracted from successive data frames. To eliminate the cumulative errors caused by dead reckoning and radar itself, we introduce an error vector model defined between two successive layers and correct each data frame based on error vectors. The experimental results in a real office environment show that the approach we proposed can effectively reduce the cumulative errors during localization and mapping.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信