多电池系统放电技术分析

Ravishankar Rao, S. Vrudhula, Daler N. Rakhmatov
{"title":"多电池系统放电技术分析","authors":"Ravishankar Rao, S. Vrudhula, Daler N. Rakhmatov","doi":"10.1109/LPE.2003.1231833","DOIUrl":null,"url":null,"abstract":"We consider the problem of scheduling multiple identical batteries for discharge in portable electronic systems. Unlike previous work reporting some experimental data to suggest which scheduling schemes are better than others, we arrive at our general conclusions formally, based on the analysis of an accurate high-level model of battery behavior. Our analytical results show that: (1) the lifetime of a parallel discharge schedule is equal to that of an equivalent monolithic battery, (2) the lifetime of a parallel discharge-schedule is no less than that of a sequential discharge schedule, and (3) the lifetime of a switched discharge schedule approaches that of an equivalent monolithic battery as the switching frequency increases. We also derive bounds on the lifetime of a single battery under a constant-rate load, and then extend them to multiple battery systems. Using a low-level battery simulator, we verify our analytical findings with numerical data. For the simulated cases, the parallel discharge schedule resulted in up to 72% higher lifetimes than the sequential discharge schedule but fell short of the lifetime tipper bound by up to 29%.","PeriodicalId":355883,"journal":{"name":"Proceedings of the 2003 International Symposium on Low Power Electronics and Design, 2003. ISLPED '03.","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Analysis of discharge techniques for multiple battery systems\",\"authors\":\"Ravishankar Rao, S. Vrudhula, Daler N. Rakhmatov\",\"doi\":\"10.1109/LPE.2003.1231833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of scheduling multiple identical batteries for discharge in portable electronic systems. Unlike previous work reporting some experimental data to suggest which scheduling schemes are better than others, we arrive at our general conclusions formally, based on the analysis of an accurate high-level model of battery behavior. Our analytical results show that: (1) the lifetime of a parallel discharge schedule is equal to that of an equivalent monolithic battery, (2) the lifetime of a parallel discharge-schedule is no less than that of a sequential discharge schedule, and (3) the lifetime of a switched discharge schedule approaches that of an equivalent monolithic battery as the switching frequency increases. We also derive bounds on the lifetime of a single battery under a constant-rate load, and then extend them to multiple battery systems. Using a low-level battery simulator, we verify our analytical findings with numerical data. For the simulated cases, the parallel discharge schedule resulted in up to 72% higher lifetimes than the sequential discharge schedule but fell short of the lifetime tipper bound by up to 29%.\",\"PeriodicalId\":355883,\"journal\":{\"name\":\"Proceedings of the 2003 International Symposium on Low Power Electronics and Design, 2003. ISLPED '03.\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2003 International Symposium on Low Power Electronics and Design, 2003. ISLPED '03.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LPE.2003.1231833\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2003 International Symposium on Low Power Electronics and Design, 2003. ISLPED '03.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LPE.2003.1231833","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

研究了便携式电子系统中多个相同电池的放电调度问题。与以前的工作报告一些实验数据来建议哪种调度方案比其他方案更好不同,我们基于对电池行为的精确高级模型的分析,正式得出了我们的一般结论。我们的分析结果表明:(1)并联放电计划的寿命等于等效单片电池的寿命,(2)并联放电计划的寿命不小于顺序放电计划的寿命,(3)随着开关频率的增加,开关放电计划的寿命接近等效单片电池的寿命。我们还推导了在恒定速率负载下单个电池寿命的界限,然后将其扩展到多个电池系统。使用低水平电池模拟器,我们用数值数据验证了我们的分析结果。在模拟情况下,并行放电计划的寿命比顺序放电计划高72%,但比寿命上限低29%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of discharge techniques for multiple battery systems
We consider the problem of scheduling multiple identical batteries for discharge in portable electronic systems. Unlike previous work reporting some experimental data to suggest which scheduling schemes are better than others, we arrive at our general conclusions formally, based on the analysis of an accurate high-level model of battery behavior. Our analytical results show that: (1) the lifetime of a parallel discharge schedule is equal to that of an equivalent monolithic battery, (2) the lifetime of a parallel discharge-schedule is no less than that of a sequential discharge schedule, and (3) the lifetime of a switched discharge schedule approaches that of an equivalent monolithic battery as the switching frequency increases. We also derive bounds on the lifetime of a single battery under a constant-rate load, and then extend them to multiple battery systems. Using a low-level battery simulator, we verify our analytical findings with numerical data. For the simulated cases, the parallel discharge schedule resulted in up to 72% higher lifetimes than the sequential discharge schedule but fell short of the lifetime tipper bound by up to 29%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信