一种正交基非线性系统辨识方法的计算评价

J. A. Castano, F. Ruiz
{"title":"一种正交基非线性系统辨识方法的计算评价","authors":"J. A. Castano, F. Ruiz","doi":"10.1109/ANDESCON.2010.5633257","DOIUrl":null,"url":null,"abstract":"Recently, novel identification methods have been proposed based on orthogonal basis nonlinear functions. These methods present strong statistical convergence properties but have not been evaluated from a computational point of view. This paper investigates the computational cost and performance of an orthogonal basis nonlinear system identification method. The computational effort of the model estimation and simulation are evaluated for an increasing number of experimental data, régresser dimension and for different values of a bandwidth limiting parameter. Results show that complexity increases linearly with all parameters for first-order interactions. For second order interactions, complexity increases exponentially with the régresser dimension and linearly with the other parameters. A simulated example illustrates the obtained results.","PeriodicalId":359559,"journal":{"name":"2010 IEEE ANDESCON","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Computational evaluation of an orthogonal basis nonlinear system identification method\",\"authors\":\"J. A. Castano, F. Ruiz\",\"doi\":\"10.1109/ANDESCON.2010.5633257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, novel identification methods have been proposed based on orthogonal basis nonlinear functions. These methods present strong statistical convergence properties but have not been evaluated from a computational point of view. This paper investigates the computational cost and performance of an orthogonal basis nonlinear system identification method. The computational effort of the model estimation and simulation are evaluated for an increasing number of experimental data, régresser dimension and for different values of a bandwidth limiting parameter. Results show that complexity increases linearly with all parameters for first-order interactions. For second order interactions, complexity increases exponentially with the régresser dimension and linearly with the other parameters. A simulated example illustrates the obtained results.\",\"PeriodicalId\":359559,\"journal\":{\"name\":\"2010 IEEE ANDESCON\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE ANDESCON\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ANDESCON.2010.5633257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE ANDESCON","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANDESCON.2010.5633257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

近年来,人们提出了基于正交基非线性函数的辨识方法。这些方法表现出很强的统计收敛性,但尚未从计算的角度进行评估。本文研究了正交基非线性系统辨识方法的计算量和性能。在不断增加的实验数据、不断变化的维度和不同的带宽限制参数值的情况下,对模型估计和仿真的计算量进行了评估。结果表明,一阶相互作用的复杂性随所有参数的增加而线性增加。对于二阶相互作用,复杂性随回调维数呈指数增长,随其他参数呈线性增长。仿真算例说明了所得结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational evaluation of an orthogonal basis nonlinear system identification method
Recently, novel identification methods have been proposed based on orthogonal basis nonlinear functions. These methods present strong statistical convergence properties but have not been evaluated from a computational point of view. This paper investigates the computational cost and performance of an orthogonal basis nonlinear system identification method. The computational effort of the model estimation and simulation are evaluated for an increasing number of experimental data, régresser dimension and for different values of a bandwidth limiting parameter. Results show that complexity increases linearly with all parameters for first-order interactions. For second order interactions, complexity increases exponentially with the régresser dimension and linearly with the other parameters. A simulated example illustrates the obtained results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信