{"title":"移动机器人网络随机源搜索的分布式算法:技术报告","authors":"Nikolay A. Atanasov, J. L. Ny, George J. Pappas","doi":"10.1115/1.4027892","DOIUrl":null,"url":null,"abstract":"Autonomous robot networks are an effective tool for monitoring large-scale environmental fields. This paper proposes distributed control strategies for localizing the source of a noisy signal, which could represent a physical quantity of interest such as magnetic force, heat, radio signal, or chemical concentration. We develop algorithms specific to two scenarios: one in which the sensors have a precise model of the signal formation process and one in which a signal model is not available. In the model-free scenario, a team of sensors is used to follow a stochastic gradient of the signal field. Our approach is distributed, robust to deformations in the group geometry, does not necessitate global localization, and is guaranteed to lead the sensors to a neighborhood of a local maximum of the field. In the model-based scenario, the sensors follow the stochastic gradient of the mutual information between their expected measurements and the location of the source in a distributed manner. The performance is demonstrated in simulation using a robot sensor network to localize the source of a wireless radio signal.","PeriodicalId":263659,"journal":{"name":"arXiv: Multiagent Systems","volume":"210 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"74","resultStr":"{\"title\":\"Distributed Algorithms for Stochastic Source Seeking with Mobile Robot Networks: Technical Report\",\"authors\":\"Nikolay A. Atanasov, J. L. Ny, George J. Pappas\",\"doi\":\"10.1115/1.4027892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autonomous robot networks are an effective tool for monitoring large-scale environmental fields. This paper proposes distributed control strategies for localizing the source of a noisy signal, which could represent a physical quantity of interest such as magnetic force, heat, radio signal, or chemical concentration. We develop algorithms specific to two scenarios: one in which the sensors have a precise model of the signal formation process and one in which a signal model is not available. In the model-free scenario, a team of sensors is used to follow a stochastic gradient of the signal field. Our approach is distributed, robust to deformations in the group geometry, does not necessitate global localization, and is guaranteed to lead the sensors to a neighborhood of a local maximum of the field. In the model-based scenario, the sensors follow the stochastic gradient of the mutual information between their expected measurements and the location of the source in a distributed manner. The performance is demonstrated in simulation using a robot sensor network to localize the source of a wireless radio signal.\",\"PeriodicalId\":263659,\"journal\":{\"name\":\"arXiv: Multiagent Systems\",\"volume\":\"210 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"74\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Multiagent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4027892\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Multiagent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4027892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Distributed Algorithms for Stochastic Source Seeking with Mobile Robot Networks: Technical Report
Autonomous robot networks are an effective tool for monitoring large-scale environmental fields. This paper proposes distributed control strategies for localizing the source of a noisy signal, which could represent a physical quantity of interest such as magnetic force, heat, radio signal, or chemical concentration. We develop algorithms specific to two scenarios: one in which the sensors have a precise model of the signal formation process and one in which a signal model is not available. In the model-free scenario, a team of sensors is used to follow a stochastic gradient of the signal field. Our approach is distributed, robust to deformations in the group geometry, does not necessitate global localization, and is guaranteed to lead the sensors to a neighborhood of a local maximum of the field. In the model-based scenario, the sensors follow the stochastic gradient of the mutual information between their expected measurements and the location of the source in a distributed manner. The performance is demonstrated in simulation using a robot sensor network to localize the source of a wireless radio signal.