二进制逻辑开关缩放的物理限制

C. Lent, Mo Liu, J. Timler
{"title":"二进制逻辑开关缩放的物理限制","authors":"C. Lent, Mo Liu, J. Timler","doi":"10.1109/DRC.2004.1367842","DOIUrl":null,"url":null,"abstract":"We examine the scaling limits of energy dissipation in a specific and concrete physical model - that of clocked quantum-dot cellular automata (QCA). Prototype QCA devices exist and have demonstrated true power gain, an essential feature for any general-purpose computational technology. Though present devices operate at cryogenic temperatures, much work has been done on molecular implementations which can operate at room temperature and are notably smaller than 1.5 nm. QCA represents a radical departure from CMOS, but is still a charge-based binary approach. We solve the equations of motion for the system in the presence of a thermal environment with no a priori assumptions about energy flow. We show directly the effect of the logical structure of the calculation on the heat generated by a circuit. These calculations point to the real nature of the thermodynamic limitations of scaling binary logic devices and suggest strategies for achieving the ultimate limits of device scaling.","PeriodicalId":385948,"journal":{"name":"Conference Digest [Includes 'Late News Papers' volume] Device Research Conference, 2004. 62nd DRC.","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Physical limits on binary logic switch scaling\",\"authors\":\"C. Lent, Mo Liu, J. Timler\",\"doi\":\"10.1109/DRC.2004.1367842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We examine the scaling limits of energy dissipation in a specific and concrete physical model - that of clocked quantum-dot cellular automata (QCA). Prototype QCA devices exist and have demonstrated true power gain, an essential feature for any general-purpose computational technology. Though present devices operate at cryogenic temperatures, much work has been done on molecular implementations which can operate at room temperature and are notably smaller than 1.5 nm. QCA represents a radical departure from CMOS, but is still a charge-based binary approach. We solve the equations of motion for the system in the presence of a thermal environment with no a priori assumptions about energy flow. We show directly the effect of the logical structure of the calculation on the heat generated by a circuit. These calculations point to the real nature of the thermodynamic limitations of scaling binary logic devices and suggest strategies for achieving the ultimate limits of device scaling.\",\"PeriodicalId\":385948,\"journal\":{\"name\":\"Conference Digest [Includes 'Late News Papers' volume] Device Research Conference, 2004. 62nd DRC.\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Digest [Includes 'Late News Papers' volume] Device Research Conference, 2004. 62nd DRC.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DRC.2004.1367842\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Digest [Includes 'Late News Papers' volume] Device Research Conference, 2004. 62nd DRC.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2004.1367842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们研究了一个特定的和具体的物理模型-时钟量子点元胞自动机(QCA)的能量耗散的缩放极限。QCA原型设备已经存在,并且已经证明了真正的功率增益,这是任何通用计算技术的基本特征。虽然目前的器件在低温下工作,但在室温下工作的分子实现方面已经做了很多工作,特别是小于1.5 nm。QCA代表了对CMOS的彻底背离,但仍然是基于电荷的二元方法。我们解了系统在热环境下的运动方程,没有关于能量流的先验假设。我们直接展示了计算的逻辑结构对电路产生的热量的影响。这些计算指出了缩放二进制逻辑器件的热力学限制的真实本质,并提出了实现器件缩放的最终限制的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Physical limits on binary logic switch scaling
We examine the scaling limits of energy dissipation in a specific and concrete physical model - that of clocked quantum-dot cellular automata (QCA). Prototype QCA devices exist and have demonstrated true power gain, an essential feature for any general-purpose computational technology. Though present devices operate at cryogenic temperatures, much work has been done on molecular implementations which can operate at room temperature and are notably smaller than 1.5 nm. QCA represents a radical departure from CMOS, but is still a charge-based binary approach. We solve the equations of motion for the system in the presence of a thermal environment with no a priori assumptions about energy flow. We show directly the effect of the logical structure of the calculation on the heat generated by a circuit. These calculations point to the real nature of the thermodynamic limitations of scaling binary logic devices and suggest strategies for achieving the ultimate limits of device scaling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信