数值天气预报误差校正的坐标- rnn

Chan-Jik Yu, Heewoong Ahn, Junhee Seok
{"title":"数值天气预报误差校正的坐标- rnn","authors":"Chan-Jik Yu, Heewoong Ahn, Junhee Seok","doi":"10.23919/ELINFOCOM.2018.8330699","DOIUrl":null,"url":null,"abstract":"In this work, we present a coordinate-based Recurrent Neural Networks (RNN) for error correction on the Numerical Weather Prediction (NWP) model. We show that the output errors on NWP have spatial and temporal properties, which is collinear with meteorological data. The correction model reflects these characteristics by encompassing the latitude and longitude coordinates as direct inputs to RNN. Examined with the NWP data in Korea, the proposed RNN-based correction reduces the humidity prediction errors by 4.8% and 4.2% compared to the predictions without correction and with simple linear correction, respectively. The overall result highlights the promise of our approach.","PeriodicalId":413646,"journal":{"name":"2018 International Conference on Electronics, Information, and Communication (ICEIC)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Coordinate-RNN for error correction on numerical weather prediction\",\"authors\":\"Chan-Jik Yu, Heewoong Ahn, Junhee Seok\",\"doi\":\"10.23919/ELINFOCOM.2018.8330699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we present a coordinate-based Recurrent Neural Networks (RNN) for error correction on the Numerical Weather Prediction (NWP) model. We show that the output errors on NWP have spatial and temporal properties, which is collinear with meteorological data. The correction model reflects these characteristics by encompassing the latitude and longitude coordinates as direct inputs to RNN. Examined with the NWP data in Korea, the proposed RNN-based correction reduces the humidity prediction errors by 4.8% and 4.2% compared to the predictions without correction and with simple linear correction, respectively. The overall result highlights the promise of our approach.\",\"PeriodicalId\":413646,\"journal\":{\"name\":\"2018 International Conference on Electronics, Information, and Communication (ICEIC)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Electronics, Information, and Communication (ICEIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ELINFOCOM.2018.8330699\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Electronics, Information, and Communication (ICEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ELINFOCOM.2018.8330699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在这项工作中,我们提出了一种基于坐标的递归神经网络(RNN)用于数值天气预报(NWP)模型的误差校正。结果表明,NWP的输出误差具有时空特性,且与气象数据共线性。修正模型通过将纬度和经度坐标作为RNN的直接输入来反映这些特征。通过对韩国NWP数据的检验,与不校正和简单线性校正相比,提出的基于rnn的校正方法将湿度预测误差分别降低了4.8%和4.2%。总体结果突出了我们的方法的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coordinate-RNN for error correction on numerical weather prediction
In this work, we present a coordinate-based Recurrent Neural Networks (RNN) for error correction on the Numerical Weather Prediction (NWP) model. We show that the output errors on NWP have spatial and temporal properties, which is collinear with meteorological data. The correction model reflects these characteristics by encompassing the latitude and longitude coordinates as direct inputs to RNN. Examined with the NWP data in Korea, the proposed RNN-based correction reduces the humidity prediction errors by 4.8% and 4.2% compared to the predictions without correction and with simple linear correction, respectively. The overall result highlights the promise of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信