Naoki Akai, Luis Yoichi Morales Saiki, E. Takeuchi, Yuki Yoshihara, Y. Ninomiya
{"title":"鲁棒定位使用三维无损检测扫描匹配与实验确定的不确定性和道路标记匹配","authors":"Naoki Akai, Luis Yoichi Morales Saiki, E. Takeuchi, Yuki Yoshihara, Y. Ninomiya","doi":"10.1109/IVS.2017.7995900","DOIUrl":null,"url":null,"abstract":"In this paper, we present a localization approach that is based on a point-cloud matching method (normal distribution transform “NDT”) and road-marker matching based on the light detection and ranging intensity. Point-cloud map-based localization methods enable autonomous vehicles to accurately estimate their own positions. However, accurate localization and “matching error” estimations cannot be performed when the appearance of the environment changes, and this is common in rural environments. To cope with these inaccuracies, in this work, we propose to estimate the error of NDT scan matching beforehand (off-line). Then, as the vehicle navigates in the environment, the appropriate uncertainty is assigned to the scan matching. 3D NDT scan matching utilizes the uncertainty information that is estimated off-line, and is combined with a road-marker matching approach using a particle-filtering algorithm. As a result, accurate localization can be performed in areas in which 3D NDT failed. In addition, the uncertainty of the localization is reduced. Experimental results show the performance of the proposed method.","PeriodicalId":143367,"journal":{"name":"2017 IEEE Intelligent Vehicles Symposium (IV)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"69","resultStr":"{\"title\":\"Robust localization using 3D NDT scan matching with experimentally determined uncertainty and road marker matching\",\"authors\":\"Naoki Akai, Luis Yoichi Morales Saiki, E. Takeuchi, Yuki Yoshihara, Y. Ninomiya\",\"doi\":\"10.1109/IVS.2017.7995900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a localization approach that is based on a point-cloud matching method (normal distribution transform “NDT”) and road-marker matching based on the light detection and ranging intensity. Point-cloud map-based localization methods enable autonomous vehicles to accurately estimate their own positions. However, accurate localization and “matching error” estimations cannot be performed when the appearance of the environment changes, and this is common in rural environments. To cope with these inaccuracies, in this work, we propose to estimate the error of NDT scan matching beforehand (off-line). Then, as the vehicle navigates in the environment, the appropriate uncertainty is assigned to the scan matching. 3D NDT scan matching utilizes the uncertainty information that is estimated off-line, and is combined with a road-marker matching approach using a particle-filtering algorithm. As a result, accurate localization can be performed in areas in which 3D NDT failed. In addition, the uncertainty of the localization is reduced. Experimental results show the performance of the proposed method.\",\"PeriodicalId\":143367,\"journal\":{\"name\":\"2017 IEEE Intelligent Vehicles Symposium (IV)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"69\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Intelligent Vehicles Symposium (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2017.7995900\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2017.7995900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Robust localization using 3D NDT scan matching with experimentally determined uncertainty and road marker matching
In this paper, we present a localization approach that is based on a point-cloud matching method (normal distribution transform “NDT”) and road-marker matching based on the light detection and ranging intensity. Point-cloud map-based localization methods enable autonomous vehicles to accurately estimate their own positions. However, accurate localization and “matching error” estimations cannot be performed when the appearance of the environment changes, and this is common in rural environments. To cope with these inaccuracies, in this work, we propose to estimate the error of NDT scan matching beforehand (off-line). Then, as the vehicle navigates in the environment, the appropriate uncertainty is assigned to the scan matching. 3D NDT scan matching utilizes the uncertainty information that is estimated off-line, and is combined with a road-marker matching approach using a particle-filtering algorithm. As a result, accurate localization can be performed in areas in which 3D NDT failed. In addition, the uncertainty of the localization is reduced. Experimental results show the performance of the proposed method.