不稳定重型自平衡机器人模型预测控制器的研制

M. Okulski, M. Lawrynczuk
{"title":"不稳定重型自平衡机器人模型预测控制器的研制","authors":"M. Okulski, M. Lawrynczuk","doi":"10.1109/MMAR.2018.8486128","DOIUrl":null,"url":null,"abstract":"This paper describes development of a control system for a heavy self-balancing two-wheeled robot. The development process includes: model identification, model tuning, design and tuning of a Model Predictive Control (MPC) algorithm. Although a simple linear state-space model with only two state variables is used, the results of laboratory experiments clearly indicate that the MPC algorithm based on such a model works well, i.e. the algorithm is able to effectively stabilise the robot.","PeriodicalId":201658,"journal":{"name":"2018 23rd International Conference on Methods & Models in Automation & Robotics (MMAR)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Development of a Model Predictive Controller for an Unstable Heavy Self-Balancing Robot\",\"authors\":\"M. Okulski, M. Lawrynczuk\",\"doi\":\"10.1109/MMAR.2018.8486128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes development of a control system for a heavy self-balancing two-wheeled robot. The development process includes: model identification, model tuning, design and tuning of a Model Predictive Control (MPC) algorithm. Although a simple linear state-space model with only two state variables is used, the results of laboratory experiments clearly indicate that the MPC algorithm based on such a model works well, i.e. the algorithm is able to effectively stabilise the robot.\",\"PeriodicalId\":201658,\"journal\":{\"name\":\"2018 23rd International Conference on Methods & Models in Automation & Robotics (MMAR)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 23rd International Conference on Methods & Models in Automation & Robotics (MMAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMAR.2018.8486128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 23rd International Conference on Methods & Models in Automation & Robotics (MMAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMAR.2018.8486128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

介绍了一种重型自平衡两轮机器人控制系统的研制。开发过程包括:模型识别、模型整定、模型预测控制(MPC)算法的设计和整定。虽然使用的是只有两个状态变量的简单线性状态空间模型,但实验室实验结果清楚地表明,基于该模型的MPC算法效果良好,即该算法能够有效地稳定机器人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of a Model Predictive Controller for an Unstable Heavy Self-Balancing Robot
This paper describes development of a control system for a heavy self-balancing two-wheeled robot. The development process includes: model identification, model tuning, design and tuning of a Model Predictive Control (MPC) algorithm. Although a simple linear state-space model with only two state variables is used, the results of laboratory experiments clearly indicate that the MPC algorithm based on such a model works well, i.e. the algorithm is able to effectively stabilise the robot.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信