稀疏傅里叶图像重建的硬件加速

Quang Dinh, Y. Bresler, Deming Chen
{"title":"稀疏傅里叶图像重建的硬件加速","authors":"Quang Dinh, Y. Bresler, Deming Chen","doi":"10.1109/ICASIC.2007.4415887","DOIUrl":null,"url":null,"abstract":"Several supercomputer vendors now offer reconfigurable computing (RC) systems, combining general-purpose processors with fie Id-program m able gate arrays (FPGAs). The FPGAs can be configured as custom computing architectures for the computationally intensive parts of each application. In this paper we present an RC-based hardware accelerator for an important medical imaging algorithm: iterative sparse Fourier image reconstruction. We transform the algorithm to exploit massive parallelism available in the FPGA fabric. Our design allows different ways of chaining custom pipelined vector engines, so that different computations can be carried out without reconfiguration overhead. Actual runtime performance data show that we achieve up to 10 times speedup compared to the software-only version. The design is estimated to provide even more speedup on a next-generation RC platform.","PeriodicalId":120984,"journal":{"name":"2007 7th International Conference on ASIC","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hardware acceleration for sparse fourier image reconstruction\",\"authors\":\"Quang Dinh, Y. Bresler, Deming Chen\",\"doi\":\"10.1109/ICASIC.2007.4415887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several supercomputer vendors now offer reconfigurable computing (RC) systems, combining general-purpose processors with fie Id-program m able gate arrays (FPGAs). The FPGAs can be configured as custom computing architectures for the computationally intensive parts of each application. In this paper we present an RC-based hardware accelerator for an important medical imaging algorithm: iterative sparse Fourier image reconstruction. We transform the algorithm to exploit massive parallelism available in the FPGA fabric. Our design allows different ways of chaining custom pipelined vector engines, so that different computations can be carried out without reconfiguration overhead. Actual runtime performance data show that we achieve up to 10 times speedup compared to the software-only version. The design is estimated to provide even more speedup on a next-generation RC platform.\",\"PeriodicalId\":120984,\"journal\":{\"name\":\"2007 7th International Conference on ASIC\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 7th International Conference on ASIC\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASIC.2007.4415887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 7th International Conference on ASIC","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASIC.2007.4415887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

一些超级计算机供应商现在提供可重构计算(RC)系统,将通用处理器与五个可识别程序的门阵列(fpga)相结合。fpga可以配置为每个应用程序的计算密集型部分的自定义计算架构。在本文中,我们提出了一个基于rc的硬件加速器,用于一个重要的医学成像算法:迭代稀疏傅里叶图像重建。我们对算法进行了改造,以利用FPGA结构中可用的大规模并行性。我们的设计允许以不同的方式链接定制的流水线矢量引擎,这样就可以在没有重新配置开销的情况下进行不同的计算。实际运行时性能数据表明,与纯软件版本相比,我们实现了高达10倍的加速。据估计,该设计将在下一代RC平台上提供更多的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hardware acceleration for sparse fourier image reconstruction
Several supercomputer vendors now offer reconfigurable computing (RC) systems, combining general-purpose processors with fie Id-program m able gate arrays (FPGAs). The FPGAs can be configured as custom computing architectures for the computationally intensive parts of each application. In this paper we present an RC-based hardware accelerator for an important medical imaging algorithm: iterative sparse Fourier image reconstruction. We transform the algorithm to exploit massive parallelism available in the FPGA fabric. Our design allows different ways of chaining custom pipelined vector engines, so that different computations can be carried out without reconfiguration overhead. Actual runtime performance data show that we achieve up to 10 times speedup compared to the software-only version. The design is estimated to provide even more speedup on a next-generation RC platform.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信