J. Calandrino, Dan P. Baumberger, Tong Li, Scott Hahn, James H. Anderson
{"title":"性能不对称多核平台的软实时调度","authors":"J. Calandrino, Dan P. Baumberger, Tong Li, Scott Hahn, James H. Anderson","doi":"10.1109/RTAS.2007.35","DOIUrl":null,"url":null,"abstract":"This paper discusses an approach for supporting soft real-time periodic tasks in Linux on performance asymmetric multicore platforms (AMPs). Such architectures consist of a large number of processing units on one or several chips, where each processing unit is capable of executing the same instruction set at a different performance level. We discuss deficiencies of Linux in supporting periodic real-time tasks, particularly when cores are asymmetric, and how such deficiencies were overcome. We also investigate how to provide good performance for non-real-time tasks in the presence of a real-time workload. We show that this can be done by using deferrable servers to explicitly reserve a share of each core for non-real-time tasks. This allows non-real-time tasks to have priority over real-time tasks when doing so will not cause timing requirements to be violated, thus improving non-real-time response times. Experiments show that even small deferrable servers can have a dramatic impact on non-real-time task performance","PeriodicalId":222543,"journal":{"name":"13th IEEE Real Time and Embedded Technology and Applications Symposium (RTAS'07)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":"{\"title\":\"Soft Real-Time Scheduling on Performance Asymmetric Multicore Platforms\",\"authors\":\"J. Calandrino, Dan P. Baumberger, Tong Li, Scott Hahn, James H. Anderson\",\"doi\":\"10.1109/RTAS.2007.35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses an approach for supporting soft real-time periodic tasks in Linux on performance asymmetric multicore platforms (AMPs). Such architectures consist of a large number of processing units on one or several chips, where each processing unit is capable of executing the same instruction set at a different performance level. We discuss deficiencies of Linux in supporting periodic real-time tasks, particularly when cores are asymmetric, and how such deficiencies were overcome. We also investigate how to provide good performance for non-real-time tasks in the presence of a real-time workload. We show that this can be done by using deferrable servers to explicitly reserve a share of each core for non-real-time tasks. This allows non-real-time tasks to have priority over real-time tasks when doing so will not cause timing requirements to be violated, thus improving non-real-time response times. Experiments show that even small deferrable servers can have a dramatic impact on non-real-time task performance\",\"PeriodicalId\":222543,\"journal\":{\"name\":\"13th IEEE Real Time and Embedded Technology and Applications Symposium (RTAS'07)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"13th IEEE Real Time and Embedded Technology and Applications Symposium (RTAS'07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTAS.2007.35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"13th IEEE Real Time and Embedded Technology and Applications Symposium (RTAS'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTAS.2007.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Soft Real-Time Scheduling on Performance Asymmetric Multicore Platforms
This paper discusses an approach for supporting soft real-time periodic tasks in Linux on performance asymmetric multicore platforms (AMPs). Such architectures consist of a large number of processing units on one or several chips, where each processing unit is capable of executing the same instruction set at a different performance level. We discuss deficiencies of Linux in supporting periodic real-time tasks, particularly when cores are asymmetric, and how such deficiencies were overcome. We also investigate how to provide good performance for non-real-time tasks in the presence of a real-time workload. We show that this can be done by using deferrable servers to explicitly reserve a share of each core for non-real-time tasks. This allows non-real-time tasks to have priority over real-time tasks when doing so will not cause timing requirements to be violated, thus improving non-real-time response times. Experiments show that even small deferrable servers can have a dramatic impact on non-real-time task performance