基于人工神经网络的康普顿相机图像重建

T. Karg, J. Pauli, G. Anton, W. Beulertz
{"title":"基于人工神经网络的康普顿相机图像重建","authors":"T. Karg, J. Pauli, G. Anton, W. Beulertz","doi":"10.1109/NSSMIC.2001.1009249","DOIUrl":null,"url":null,"abstract":"We report on a new and fast approach for the three-dimensional reconstruction of X-ray source distributions monitored by a Compton-camera consisting of two layers of pixel-detectors. We use multi-layer feedforward artificial neural networks trained by a standard backpropagation algorithm to determine the probability that a given Compton scattered photon originated from a certain point in the reconstruction space. Summing up this probability for all measured photons at each volume element (voxel) of the discretized reconstruction space gives a good estimate of the real X-ray source distribution. We reconstruct and discuss the point spread function obtained with different materials (germanium, silicon) used for the scatter detector and incident photons having an energy of 122 keV and 512 keV.","PeriodicalId":159123,"journal":{"name":"2001 IEEE Nuclear Science Symposium Conference Record (Cat. No.01CH37310)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Reconstruction of Compton-camera images using artificial neural networks\",\"authors\":\"T. Karg, J. Pauli, G. Anton, W. Beulertz\",\"doi\":\"10.1109/NSSMIC.2001.1009249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report on a new and fast approach for the three-dimensional reconstruction of X-ray source distributions monitored by a Compton-camera consisting of two layers of pixel-detectors. We use multi-layer feedforward artificial neural networks trained by a standard backpropagation algorithm to determine the probability that a given Compton scattered photon originated from a certain point in the reconstruction space. Summing up this probability for all measured photons at each volume element (voxel) of the discretized reconstruction space gives a good estimate of the real X-ray source distribution. We reconstruct and discuss the point spread function obtained with different materials (germanium, silicon) used for the scatter detector and incident photons having an energy of 122 keV and 512 keV.\",\"PeriodicalId\":159123,\"journal\":{\"name\":\"2001 IEEE Nuclear Science Symposium Conference Record (Cat. No.01CH37310)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2001 IEEE Nuclear Science Symposium Conference Record (Cat. No.01CH37310)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSSMIC.2001.1009249\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2001 IEEE Nuclear Science Symposium Conference Record (Cat. No.01CH37310)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.2001.1009249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们报告了一种新的快速方法,用于由两层像素探测器组成的康普顿相机监测的x射线源分布的三维重建。我们使用标准反向传播算法训练的多层前馈人工神经网络来确定给定康普顿散射光子起源于重构空间中某一点的概率。将离散重建空间中每个体素上所有测量光子的概率相加,可以很好地估计真实x射线源的分布。我们重建并讨论了用不同材料(锗、硅)和能量分别为122kev和512kev的入射光子所得到的点扩展函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reconstruction of Compton-camera images using artificial neural networks
We report on a new and fast approach for the three-dimensional reconstruction of X-ray source distributions monitored by a Compton-camera consisting of two layers of pixel-detectors. We use multi-layer feedforward artificial neural networks trained by a standard backpropagation algorithm to determine the probability that a given Compton scattered photon originated from a certain point in the reconstruction space. Summing up this probability for all measured photons at each volume element (voxel) of the discretized reconstruction space gives a good estimate of the real X-ray source distribution. We reconstruct and discuss the point spread function obtained with different materials (germanium, silicon) used for the scatter detector and incident photons having an energy of 122 keV and 512 keV.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信