多变量多项式处理。在插值中的应用

E. V. Kriphnamurthy, H. Venkateswaran
{"title":"多变量多项式处理。在插值中的应用","authors":"E. V. Kriphnamurthy, H. Venkateswaran","doi":"10.1109/ARITH.1978.6155785","DOIUrl":null,"url":null,"abstract":"A data-structure suitable for multivariable polynomial processing is introduced. Using this data-structure, arithmetic algorithms are described for addition, subtraction and multiplication of multivariable polynomials; also algorithms are described for forming the inner product and tensor product of vectors, whose components are multivariable polynomials. Application of these algorithms. for multivariable cardinal spline approximation is described in detail.","PeriodicalId":443215,"journal":{"name":"1978 IEEE 4th Symposium onomputer Arithmetic (ARITH)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1978-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multivariable polynomial processing — Applications to interpolation\",\"authors\":\"E. V. Kriphnamurthy, H. Venkateswaran\",\"doi\":\"10.1109/ARITH.1978.6155785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A data-structure suitable for multivariable polynomial processing is introduced. Using this data-structure, arithmetic algorithms are described for addition, subtraction and multiplication of multivariable polynomials; also algorithms are described for forming the inner product and tensor product of vectors, whose components are multivariable polynomials. Application of these algorithms. for multivariable cardinal spline approximation is described in detail.\",\"PeriodicalId\":443215,\"journal\":{\"name\":\"1978 IEEE 4th Symposium onomputer Arithmetic (ARITH)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1978-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1978 IEEE 4th Symposium onomputer Arithmetic (ARITH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARITH.1978.6155785\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1978 IEEE 4th Symposium onomputer Arithmetic (ARITH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.1978.6155785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

介绍了一种适用于多变量多项式处理的数据结构。利用这种数据结构,描述了多变量多项式的加法、减法和乘法的算法;此外,还描述了形成向量的内积和张量积的算法,它们的成分是多变量多项式。这些算法的应用。对多变量基数样条近似进行了详细的描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multivariable polynomial processing — Applications to interpolation
A data-structure suitable for multivariable polynomial processing is introduced. Using this data-structure, arithmetic algorithms are described for addition, subtraction and multiplication of multivariable polynomials; also algorithms are described for forming the inner product and tensor product of vectors, whose components are multivariable polynomials. Application of these algorithms. for multivariable cardinal spline approximation is described in detail.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信