加密神经网络计算

Lucien K. L. Ng, Sherman S. M. Chow
{"title":"加密神经网络计算","authors":"Lucien K. L. Ng, Sherman S. M. Chow","doi":"10.1109/SP46215.2023.10179483","DOIUrl":null,"url":null,"abstract":"We studied 53 privacy-preserving neural-network papers in 2016-2022 based on cryptography (without trusted processors or differential privacy), 16 of which only use homomorphic encryption, 19 use secure computation for inference, and 18 use non-colluding servers (among which 12 support training), solving a wide variety of research problems. We dissect their cryptographic techniques and \"love-hate relationships\" with machine learning alongside a genealogy highlighting noteworthy developments. We also re-evaluate the state of the art under WAN. We hope this can serve as a go-to guide connecting different experts in related fields.","PeriodicalId":439989,"journal":{"name":"2023 IEEE Symposium on Security and Privacy (SP)","volume":"222 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"SoK: Cryptographic Neural-Network Computation\",\"authors\":\"Lucien K. L. Ng, Sherman S. M. Chow\",\"doi\":\"10.1109/SP46215.2023.10179483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We studied 53 privacy-preserving neural-network papers in 2016-2022 based on cryptography (without trusted processors or differential privacy), 16 of which only use homomorphic encryption, 19 use secure computation for inference, and 18 use non-colluding servers (among which 12 support training), solving a wide variety of research problems. We dissect their cryptographic techniques and \\\"love-hate relationships\\\" with machine learning alongside a genealogy highlighting noteworthy developments. We also re-evaluate the state of the art under WAN. We hope this can serve as a go-to guide connecting different experts in related fields.\",\"PeriodicalId\":439989,\"journal\":{\"name\":\"2023 IEEE Symposium on Security and Privacy (SP)\",\"volume\":\"222 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Symposium on Security and Privacy (SP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SP46215.2023.10179483\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Symposium on Security and Privacy (SP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SP46215.2023.10179483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们研究了2016-2022年基于密码学(无可信处理器或差分隐私)的53篇保护隐私的神经网络论文,其中16篇仅使用同态加密,19篇使用安全计算进行推理,18篇使用非串通服务器(其中12篇支持训练),解决了各种各样的研究问题。我们剖析了他们的加密技术和机器学习的“爱恨关系”,并列出了值得注意的发展。我们还重新评估了WAN下的技术状况。我们希望这能成为连接相关领域不同专家的首选指南。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SoK: Cryptographic Neural-Network Computation
We studied 53 privacy-preserving neural-network papers in 2016-2022 based on cryptography (without trusted processors or differential privacy), 16 of which only use homomorphic encryption, 19 use secure computation for inference, and 18 use non-colluding servers (among which 12 support training), solving a wide variety of research problems. We dissect their cryptographic techniques and "love-hate relationships" with machine learning alongside a genealogy highlighting noteworthy developments. We also re-evaluate the state of the art under WAN. We hope this can serve as a go-to guide connecting different experts in related fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信