估计非径向渐晕形状

Dorotea Potoc, D. Petrinović
{"title":"估计非径向渐晕形状","authors":"Dorotea Potoc, D. Petrinović","doi":"10.23919/MIPRO57284.2023.10159695","DOIUrl":null,"url":null,"abstract":"Vignetting is a phenomenon characterized by a decrease in illumination towards the edges of an image. This effect is typically represented by a radially symmetrical model, however, this paper aims to demonstrate a non-radial model of vignetting and estimate its shape. To accomplish this, a synthetic image was created and the angular vignetting shape has been modeled as a sum of harmonics. The magnitudes and amplitudes of these harmonics were obtained and used to construct the desired angular vignetting shape. Once the synthetic image with the modeled vignetting shape and added noise was created, it was used as input into a function for vignetting estimation. Also, the inputs have been a fixed vignetting center and different initial values of harmonics’ magnitudes and phases. With that inputs, despite the level of the noise, we have successfully estimated vignetting function by non-linear optimization. The function has attempted to determine the original harmonics’ used to create the vignetting angular shape. When the vignetting model is calculated, we removed it in order to get a homogeneous image. While it may be difficult to obtain the exact original values of the harmonics’, the shape can be estimated with a high level of accuracy. The paper shows that highly accurate models can be estimated for a lower number of angular harmonics, with a residual gain error standard deviation of less than 0.03%. Even in the presence of 5dB noise in the images, the gain error standard deviation remains below 3%, as long as proper parameter initialization is performed prior to optimization.","PeriodicalId":177983,"journal":{"name":"2023 46th MIPRO ICT and Electronics Convention (MIPRO)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating a nonradial vignetting shape\",\"authors\":\"Dorotea Potoc, D. Petrinović\",\"doi\":\"10.23919/MIPRO57284.2023.10159695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vignetting is a phenomenon characterized by a decrease in illumination towards the edges of an image. This effect is typically represented by a radially symmetrical model, however, this paper aims to demonstrate a non-radial model of vignetting and estimate its shape. To accomplish this, a synthetic image was created and the angular vignetting shape has been modeled as a sum of harmonics. The magnitudes and amplitudes of these harmonics were obtained and used to construct the desired angular vignetting shape. Once the synthetic image with the modeled vignetting shape and added noise was created, it was used as input into a function for vignetting estimation. Also, the inputs have been a fixed vignetting center and different initial values of harmonics’ magnitudes and phases. With that inputs, despite the level of the noise, we have successfully estimated vignetting function by non-linear optimization. The function has attempted to determine the original harmonics’ used to create the vignetting angular shape. When the vignetting model is calculated, we removed it in order to get a homogeneous image. While it may be difficult to obtain the exact original values of the harmonics’, the shape can be estimated with a high level of accuracy. The paper shows that highly accurate models can be estimated for a lower number of angular harmonics, with a residual gain error standard deviation of less than 0.03%. Even in the presence of 5dB noise in the images, the gain error standard deviation remains below 3%, as long as proper parameter initialization is performed prior to optimization.\",\"PeriodicalId\":177983,\"journal\":{\"name\":\"2023 46th MIPRO ICT and Electronics Convention (MIPRO)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 46th MIPRO ICT and Electronics Convention (MIPRO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/MIPRO57284.2023.10159695\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 46th MIPRO ICT and Electronics Convention (MIPRO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MIPRO57284.2023.10159695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

渐晕是一种现象,其特点是对图像的边缘照明减少。这种效应通常由径向对称模型来表示,然而,本文旨在展示一种非径向的渐晕模型并估计其形状。为了实现这一点,创建了一个合成图像,并将角渐晕形状建模为谐波和。得到了这些谐波的幅值和幅值,并用于构造所需的角渐晕形状。一旦创建了具有建模的渐晕形状和添加噪声的合成图像,它就被用作渐晕估计函数的输入。输入为固定的渐晕中心和不同的谐波幅值和相位初始值。有了这些输入,尽管噪声的水平,我们已经通过非线性优化成功地估计了渐晕函数。该函数试图确定用于创建渐晕角形状的原始谐波。在计算渐晕模型时,去除渐晕模型,得到均匀图像。虽然很难获得谐波的确切原始值,但形状可以以很高的精度进行估计。本文表明,在角谐波数较少的情况下,可以估计出高精度的模型,剩余增益误差标准差小于0.03%。即使在图像中存在5dB噪声的情况下,只要在优化之前进行适当的参数初始化,增益误差标准差仍保持在3%以下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating a nonradial vignetting shape
Vignetting is a phenomenon characterized by a decrease in illumination towards the edges of an image. This effect is typically represented by a radially symmetrical model, however, this paper aims to demonstrate a non-radial model of vignetting and estimate its shape. To accomplish this, a synthetic image was created and the angular vignetting shape has been modeled as a sum of harmonics. The magnitudes and amplitudes of these harmonics were obtained and used to construct the desired angular vignetting shape. Once the synthetic image with the modeled vignetting shape and added noise was created, it was used as input into a function for vignetting estimation. Also, the inputs have been a fixed vignetting center and different initial values of harmonics’ magnitudes and phases. With that inputs, despite the level of the noise, we have successfully estimated vignetting function by non-linear optimization. The function has attempted to determine the original harmonics’ used to create the vignetting angular shape. When the vignetting model is calculated, we removed it in order to get a homogeneous image. While it may be difficult to obtain the exact original values of the harmonics’, the shape can be estimated with a high level of accuracy. The paper shows that highly accurate models can be estimated for a lower number of angular harmonics, with a residual gain error standard deviation of less than 0.03%. Even in the presence of 5dB noise in the images, the gain error standard deviation remains below 3%, as long as proper parameter initialization is performed prior to optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信