二值神经网络作为气味分类的柔性集成电路

Emre Ozer, Jedrzej Kufel, J. Biggs, James Myers, Charles Reynolds, Gavin Brown, Anjit Rana, A. Sou, C. Ramsdale, Scott White
{"title":"二值神经网络作为气味分类的柔性集成电路","authors":"Emre Ozer, Jedrzej Kufel, J. Biggs, James Myers, Charles Reynolds, Gavin Brown, Anjit Rana, A. Sou, C. Ramsdale, Scott White","doi":"10.1109/FLEPS49123.2020.9239529","DOIUrl":null,"url":null,"abstract":"This paper presents the development of a binary neural network (BNN) hardware in metal-oxide thin film transistor (TFT) technology on a flexible substrate. We develop the BNN for a sweat odour application that takes data from an e-nose sensor array detecting odour, and classifies the odour. We demonstrate a fully functional BNN flexible integrated circuit (FlexIC) fabricated in $0.8 \\mu \\mathrm{m}$ n-type metal-oxide TFT on polyimide, consuming around 1mW power, which becomes the first neural network hardware built as a FlexIC.","PeriodicalId":101496,"journal":{"name":"2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Binary Neural Network as a Flexible Integrated Circuit for Odour Classification\",\"authors\":\"Emre Ozer, Jedrzej Kufel, J. Biggs, James Myers, Charles Reynolds, Gavin Brown, Anjit Rana, A. Sou, C. Ramsdale, Scott White\",\"doi\":\"10.1109/FLEPS49123.2020.9239529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the development of a binary neural network (BNN) hardware in metal-oxide thin film transistor (TFT) technology on a flexible substrate. We develop the BNN for a sweat odour application that takes data from an e-nose sensor array detecting odour, and classifies the odour. We demonstrate a fully functional BNN flexible integrated circuit (FlexIC) fabricated in $0.8 \\\\mu \\\\mathrm{m}$ n-type metal-oxide TFT on polyimide, consuming around 1mW power, which becomes the first neural network hardware built as a FlexIC.\",\"PeriodicalId\":101496,\"journal\":{\"name\":\"2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FLEPS49123.2020.9239529\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FLEPS49123.2020.9239529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文介绍了柔性衬底金属氧化物薄膜晶体管(TFT)技术中二元神经网络(BNN)硬件的发展。我们为汗液气味应用开发了BNN,该应用从检测气味的电子鼻传感器阵列获取数据,并对气味进行分类。我们展示了一个全功能的BNN柔性集成电路(FlexIC),该电路采用$0.8 \mu \ mathm {m}$ n型金属氧化物TFT在聚酰亚胺上制造,功耗约为1mW,成为第一个用FlexIC构建的神经网络硬件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Binary Neural Network as a Flexible Integrated Circuit for Odour Classification
This paper presents the development of a binary neural network (BNN) hardware in metal-oxide thin film transistor (TFT) technology on a flexible substrate. We develop the BNN for a sweat odour application that takes data from an e-nose sensor array detecting odour, and classifies the odour. We demonstrate a fully functional BNN flexible integrated circuit (FlexIC) fabricated in $0.8 \mu \mathrm{m}$ n-type metal-oxide TFT on polyimide, consuming around 1mW power, which becomes the first neural network hardware built as a FlexIC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信