基于学习活动的数据驱动离群点检测的任务时间估计

D. Rotelli, A. Monreale
{"title":"基于学习活动的数据驱动离群点检测的任务时间估计","authors":"D. Rotelli, A. Monreale","doi":"10.1145/3506860.3506913","DOIUrl":null,"url":null,"abstract":"Temporal analysis has been demonstrated to be relevant in Learning Analytics research, and capturing time-on-task, i.e., the amount of time spent by students in quality learning, as a proxy to model learning behaviour, predict performance, and avoid drop-out has been the focus of a number of investigations. Nonetheless, most studies do not provide enough information on how their data were prepared for their findings to be easily replicated, even though data pre-processing decisions have an impact on the analysis’ outcomes and can lead to inaccurate predictions. One of the key aspects in the preparation of learning data for temporal analysis is the detection of anomalous values of temporal duration of students’ activities. Most of the works in the literature address this problem without taking into account the fact that different activities can have very different typical execution times. In this paper, we propose a methodology for estimating time-on-task that starts with a well-defined data consolidation and then applies an outlier detection strategy to the data based on a distinct study of each learning activity and its peculiarities. Our real-world data experiments show that the proposed methodology outperforms the current state of the art, providing more accurate time estimations for students’ learning tasks.","PeriodicalId":185465,"journal":{"name":"LAK22: 12th International Learning Analytics and Knowledge Conference","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Time-on-Task Estimation by data-driven Outlier Detection based on Learning Activities\",\"authors\":\"D. Rotelli, A. Monreale\",\"doi\":\"10.1145/3506860.3506913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Temporal analysis has been demonstrated to be relevant in Learning Analytics research, and capturing time-on-task, i.e., the amount of time spent by students in quality learning, as a proxy to model learning behaviour, predict performance, and avoid drop-out has been the focus of a number of investigations. Nonetheless, most studies do not provide enough information on how their data were prepared for their findings to be easily replicated, even though data pre-processing decisions have an impact on the analysis’ outcomes and can lead to inaccurate predictions. One of the key aspects in the preparation of learning data for temporal analysis is the detection of anomalous values of temporal duration of students’ activities. Most of the works in the literature address this problem without taking into account the fact that different activities can have very different typical execution times. In this paper, we propose a methodology for estimating time-on-task that starts with a well-defined data consolidation and then applies an outlier detection strategy to the data based on a distinct study of each learning activity and its peculiarities. Our real-world data experiments show that the proposed methodology outperforms the current state of the art, providing more accurate time estimations for students’ learning tasks.\",\"PeriodicalId\":185465,\"journal\":{\"name\":\"LAK22: 12th International Learning Analytics and Knowledge Conference\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"LAK22: 12th International Learning Analytics and Knowledge Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3506860.3506913\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"LAK22: 12th International Learning Analytics and Knowledge Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3506860.3506913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

时间分析已被证明与学习分析研究相关,并且捕获任务时间,即学生在高质量学习中花费的时间量,作为学习行为建模,预测表现和避免辍学的代理已成为许多调查的重点。尽管如此,大多数研究没有提供足够的信息,说明他们的数据是如何准备的,以便他们的发现容易被复制,尽管数据预处理决策对分析结果有影响,并可能导致不准确的预测。在准备学习数据进行时间分析的关键方面之一是检测学生活动的时间持续时间的异常值。文献中的大多数工作都解决了这个问题,而没有考虑到不同的活动具有非常不同的典型执行时间这一事实。在本文中,我们提出了一种估算任务时间的方法,该方法从定义良好的数据整合开始,然后基于对每个学习活动及其特性的独特研究,对数据应用异常值检测策略。我们的真实世界数据实验表明,所提出的方法优于当前的艺术状态,为学生的学习任务提供更准确的时间估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time-on-Task Estimation by data-driven Outlier Detection based on Learning Activities
Temporal analysis has been demonstrated to be relevant in Learning Analytics research, and capturing time-on-task, i.e., the amount of time spent by students in quality learning, as a proxy to model learning behaviour, predict performance, and avoid drop-out has been the focus of a number of investigations. Nonetheless, most studies do not provide enough information on how their data were prepared for their findings to be easily replicated, even though data pre-processing decisions have an impact on the analysis’ outcomes and can lead to inaccurate predictions. One of the key aspects in the preparation of learning data for temporal analysis is the detection of anomalous values of temporal duration of students’ activities. Most of the works in the literature address this problem without taking into account the fact that different activities can have very different typical execution times. In this paper, we propose a methodology for estimating time-on-task that starts with a well-defined data consolidation and then applies an outlier detection strategy to the data based on a distinct study of each learning activity and its peculiarities. Our real-world data experiments show that the proposed methodology outperforms the current state of the art, providing more accurate time estimations for students’ learning tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信