{"title":"内存系统支持并行语言实现","authors":"J. Larus, Brad Richards, Guhan Viswanathan","doi":"10.1145/195473.195545","DOIUrl":null,"url":null,"abstract":"Higher-level parallel programming languages can be difficult to implement efficiently on parallel machines. This paper shows how a flexible, compiler-controlled memory system can help achieve good performance for language constructs that previously appeared too costly to be practical.\nOur compiler-controlled memory system is called Loosely Coherent Memory (LCM). It is an example of a larger class of Reconcilable Shared Memory (RSM) systems, which generalize the replication and merge policies of cache-coherent shared-memory. RSM protocols differ in the action taken by a processor in response to a request for a location and the way in which a processor reconciles multiple outstanding copies of a location. LCM memory becomes temporarily inconsistent to implement the semantics of C** parallel functions efficiently. RSM provides a compiler with control over memory-system policies, which it can use to implement a language's semantics, improve performance, or detect errors. We illustrate the first two points with LCM and our compiler for the data-parallel language C**.","PeriodicalId":140481,"journal":{"name":"ASPLOS VI","volume":"249 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":"{\"title\":\"LCM: memory system support for parallel language implementation\",\"authors\":\"J. Larus, Brad Richards, Guhan Viswanathan\",\"doi\":\"10.1145/195473.195545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Higher-level parallel programming languages can be difficult to implement efficiently on parallel machines. This paper shows how a flexible, compiler-controlled memory system can help achieve good performance for language constructs that previously appeared too costly to be practical.\\nOur compiler-controlled memory system is called Loosely Coherent Memory (LCM). It is an example of a larger class of Reconcilable Shared Memory (RSM) systems, which generalize the replication and merge policies of cache-coherent shared-memory. RSM protocols differ in the action taken by a processor in response to a request for a location and the way in which a processor reconciles multiple outstanding copies of a location. LCM memory becomes temporarily inconsistent to implement the semantics of C** parallel functions efficiently. RSM provides a compiler with control over memory-system policies, which it can use to implement a language's semantics, improve performance, or detect errors. We illustrate the first two points with LCM and our compiler for the data-parallel language C**.\",\"PeriodicalId\":140481,\"journal\":{\"name\":\"ASPLOS VI\",\"volume\":\"249 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASPLOS VI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/195473.195545\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASPLOS VI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/195473.195545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
LCM: memory system support for parallel language implementation
Higher-level parallel programming languages can be difficult to implement efficiently on parallel machines. This paper shows how a flexible, compiler-controlled memory system can help achieve good performance for language constructs that previously appeared too costly to be practical.
Our compiler-controlled memory system is called Loosely Coherent Memory (LCM). It is an example of a larger class of Reconcilable Shared Memory (RSM) systems, which generalize the replication and merge policies of cache-coherent shared-memory. RSM protocols differ in the action taken by a processor in response to a request for a location and the way in which a processor reconciles multiple outstanding copies of a location. LCM memory becomes temporarily inconsistent to implement the semantics of C** parallel functions efficiently. RSM provides a compiler with control over memory-system policies, which it can use to implement a language's semantics, improve performance, or detect errors. We illustrate the first two points with LCM and our compiler for the data-parallel language C**.