用机器学习方法预测哈萨克斯坦的高增长公司

Yelzhas Kadyr, A. Aituar, S. Kemelbayeva
{"title":"用机器学习方法预测哈萨克斯坦的高增长公司","authors":"Yelzhas Kadyr, A. Aituar, S. Kemelbayeva","doi":"10.52123/1994-2370-2022-668","DOIUrl":null,"url":null,"abstract":"In this paper, we study the effectiveness of popular machine learning methods for predicting high-growth firms in Kazakhstan and analyze this question with a set of 2012-2018 panel datasets. Moreover, we study the most important variables for the prediction of high-growth firms out of 50 variables included in the analysis. We develop a predictive design, where the past values are used to train classifiers that are applied in predicting future outcomes. Hereto, a test sample was used to evaluate the predictive performance of the classifiers. The results indicate that the best performing classifier increases the area under the curve equal to 0.8746. In terms of the variable importance, the firm’s past growth in size, past growth in employment, past growth in revenue, and second derivative of the growth of financial variables contributed the most to predicting high-growth firms.","PeriodicalId":101499,"journal":{"name":"PUBLIC ADMINISTRATION AND CIVIL SERVICE","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PREDICTING HIGH-GROWTH FIRMS IN KAZAKHSTAN WITH MACHINE LEARNING METHODS\",\"authors\":\"Yelzhas Kadyr, A. Aituar, S. Kemelbayeva\",\"doi\":\"10.52123/1994-2370-2022-668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the effectiveness of popular machine learning methods for predicting high-growth firms in Kazakhstan and analyze this question with a set of 2012-2018 panel datasets. Moreover, we study the most important variables for the prediction of high-growth firms out of 50 variables included in the analysis. We develop a predictive design, where the past values are used to train classifiers that are applied in predicting future outcomes. Hereto, a test sample was used to evaluate the predictive performance of the classifiers. The results indicate that the best performing classifier increases the area under the curve equal to 0.8746. In terms of the variable importance, the firm’s past growth in size, past growth in employment, past growth in revenue, and second derivative of the growth of financial variables contributed the most to predicting high-growth firms.\",\"PeriodicalId\":101499,\"journal\":{\"name\":\"PUBLIC ADMINISTRATION AND CIVIL SERVICE\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PUBLIC ADMINISTRATION AND CIVIL SERVICE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52123/1994-2370-2022-668\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PUBLIC ADMINISTRATION AND CIVIL SERVICE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52123/1994-2370-2022-668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了预测哈萨克斯坦高增长公司的流行机器学习方法的有效性,并使用一组2012-2018年的面板数据集分析了这个问题。此外,我们在分析中包含的50个变量中研究了预测高增长公司的最重要变量。我们开发了一种预测设计,其中过去的值用于训练用于预测未来结果的分类器。在此,使用测试样本来评估分类器的预测性能。结果表明,性能最好的分类器使曲线下面积增加0.8746。在变量重要性方面,公司过去的规模增长、过去的就业增长、过去的收入增长和财务变量增长的二阶导数对预测高增长公司贡献最大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PREDICTING HIGH-GROWTH FIRMS IN KAZAKHSTAN WITH MACHINE LEARNING METHODS
In this paper, we study the effectiveness of popular machine learning methods for predicting high-growth firms in Kazakhstan and analyze this question with a set of 2012-2018 panel datasets. Moreover, we study the most important variables for the prediction of high-growth firms out of 50 variables included in the analysis. We develop a predictive design, where the past values are used to train classifiers that are applied in predicting future outcomes. Hereto, a test sample was used to evaluate the predictive performance of the classifiers. The results indicate that the best performing classifier increases the area under the curve equal to 0.8746. In terms of the variable importance, the firm’s past growth in size, past growth in employment, past growth in revenue, and second derivative of the growth of financial variables contributed the most to predicting high-growth firms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信